自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(539)
  • 收藏
  • 关注

原创 java:Java直接内存(堆外内存)深度解析

fill:#333;color:#333;color:#333;fill:none;Java内存体系堆内存直接内存受JVM管理GC自动回收分配速度较慢操作系统管理手动/System.gc回收分配速度快减少GC压力通过ByteBuffer分配通过Unsafe类操作适合IO密集型操作适合大内存缓存。

2025-08-12 13:05:51 822

原创 java:深度解析Java常量池机制

常量池核心价值减少内存重复占用加速符号引用解析提高字符串比较性能优化序列化/反序列化效率生产环境检查清单监控字符串常量表大小(-XX:+PrintStringTableStatistics)合理设置StringTableSize(建议质数)谨慎使用String.intern()避免性能问题定期检查运行时常量池内存占用进阶研究方向常量池在AOT编译中的应用基于常量池的代码混淆技术分布式环境下常量池同步方案新一代GC(ZGC/Shenandoah)对常量池的影响。

2025-08-12 13:05:20 721

原创 java:深度解析Java堆与栈的区别及大厂优化实践

在Java虚拟机中,堆(Heap)和栈(Stack)是两种最核心的内存区域,它们的差异直接影响着程序性能、内存管理和线程安全。

2025-08-12 13:04:50 815

原创 java:深度解析JVM内存溢出(OOM)的成因与解决方案

OOM防御黄金法则预防优于治疗:设置合理的内存限制监控必须完备:实时跟踪各内存区域快速响应机制:自动化堆转储与分析优雅降级方案:OOM时保护关键服务生产环境检查清单确保-XX:+HeapDumpOnOutOfMemoryError已启用配置合理的Metaspace大小监控堆外内存使用情况定期进行内存压力测试进阶研究方向基于机器学习的内存预测自适应内存分配算法持久化内存(PMEM)的应用。

2025-08-12 13:04:22 737

原创 java:深度解析JVM内存溢出(OOM)的成因与解决方案

OOM防御黄金法则预防优于治疗:设置合理的内存限制监控必须完备:实时跟踪各内存区域快速响应机制:自动化堆转储与分析优雅降级方案:OOM时保护关键服务生产环境检查清单确保-XX:+HeapDumpOnOutOfMemoryError已启用配置合理的Metaspace大小监控堆外内存使用情况定期进行内存压力测试进阶研究方向基于机器学习的内存预测自适应内存分配算法持久化内存(PMEM)的应用。

2025-08-12 13:03:04 974

原创 java:深度解析JVM体系架构

JVM(Java虚拟机)作为Java生态的核心运行时环境,其架构设计直接影响着应用的性能、稳定性和扩展性。对于阿里、字节跳动这样的互联网大厂,深入理解JVM架构是优化系统性能的基础。

2025-08-12 13:02:40 526

原创 java:JVM内存区域深度解析

fill:#333;color:#333;color:#333;fill:none;JVM内存区域线程私有线程共享程序计数器虚拟机栈本地方法栈堆方法区直接内存栈帧局部变量表操作数栈动态链接方法出口新生代老年代EdenSurvivor0Survivor1类型信息运行时常量池静态变量JIT代码缓存。

2025-08-12 13:00:11 857

原创 java:Java跨平台实现原理深度解析

核心优势巩固字节码作为通用中间语言JVM针对各平台深度优化严格的规范体系保障一致性生产环境检查清单统一CI/CD中的Java版本严格管理JNI调用的平台差异监控不同环境下的行为差异定期进行跨平台兼容性测试进阶发展方向探索Java模块化带来的新可能评估GraalVM在云原生场景的价值研究Wasm作为新跨平台目标的潜力通过本文深度解析,我们不仅理解了Java"一次编写,到处运行"背后的技术原理,更掌握了在大规模分布式系统中保障跨平台一致性的实战经验。

2025-08-12 12:59:29 742

原创 java:编译执行与解释执行的区别是什么?JVM使用哪种方式?

fill:#333;color:#333;color:#333;fill:none;执行方式编译执行解释执行特点提前编译执行快启动慢优化充分特点逐行翻译启动快执行慢灵活性强JVM策略解释器JIT编译器AOT编译器快速启动热点优化预编译。

2025-08-12 12:58:48 697

原创 java:深度解析JVM TLAB机制

TLAB(Thread-Local Allocation Buffer)是JVM中一种高效的内存分配机制,它通过为每个线程预先分配一块私有内存区域,显著降低了多线程环境下内存分配的开销。在阿里和字节跳动这类日均请求量超过千亿次的互联网公司中,TLAB的优化直接关系到系统的吞吐量和稳定性。

2025-08-12 12:57:33 721

原创 java:G1垃圾收集器相对于CMS的创新与突破

G1核心优势总结分区设计实现更均衡的延迟控制并行处理能力充分利用多核CPU可预测的停顿时间模型有效控制内存碎片生产环境检查清单确保JDK版本>=1.8u40(生产推荐u191+)合理设置MaxGCPauseMillis(通常100-500ms)监控RSet和记忆集开销定期分析GC日志(使用GCEasy等工具)进阶调优方向基于对象生命周期调整Region大小优化IHOP参数实现智能触发结合应用特征定制回收策略。

2025-08-12 12:56:54 675

原创 java:Java垃圾回收算法深度解析

本文深度解析Java垃圾回收算法,从基础分类到字节跳动千万级QPS系统优化实践。文章首先通过流程图展示GC算法分类及选择逻辑,详细分析G1回收器工作时序。在实战部分,分享字节跳动推荐系统通过G1调优和对象复用,实现GC停顿降低75%、吞吐量提升35%的优化案例。文中对比七大主流GC算法特性,并针对大厂面试高频问题提供解决方案,包括G1并发模式失败的诊断处理、百GB堆内存的GC选型策略等。最后提出高级调优技巧和未来演进方向,为Java高性能系统开发提供全面指导。

2025-08-12 12:56:19 696

原创 RabbitMQ:RabbitMQ延迟队列的实现原理与工程实践

方案选型建议中小规模:优先使用延迟插件,简单高效大规模场景:采用TTL+DLX结合外部存储超大规模:自研基于时间轮的延迟服务生产环境检查清单确保开启消息持久化设置合理的队列TTL和最大长度监控死信队列消息堆积情况定期检查插件版本兼容性未来演进方向与Pulsar等新型消息队列的延迟机制对比基于Serverless的弹性延迟服务机器学习预测延迟时间动态调整通过本文的深度剖析,相信读者已经掌握了RabbitMQ延迟队列的核心原理和高级实践。

2025-08-12 12:52:08 807

原创 kafka:Kafka高性能原理深度解析

Kafka之所以能够实现百万级TPS的高吞吐量,源于其精心设计的架构体系,主要性能优化点如下:fill:#333;color:#333;color:#333;fill:none;高性能设计顺序IO零拷贝批量处理页缓存分区并行压缩算法拉取模型避免磁盘寻道减少内核态拷贝提高网络利用率内存读写加速水平扩展减少网络IO消费者控制节奏。

2025-08-12 12:51:16 654

原创 rabbitMQ:RabbitMQ工作模式深度解析:从基础模式到阿里云最佳实践

RabbitMQ作为AMQP协议的典型实现,提供了多种消息分发模式,其核心工作模式及选择逻辑如下:fill:#333;color:#333;color:#333;fill:none;简单队列工作队列发布订阅路由选择主题匹配RPC调用生产者消息分发需求Simple模式Work Queue模式Publish/Subscribe模式Routing模式Topics模式RPC模式单一消费者竞争消费者广播所有消费者按路由键选择模式匹配路由请求-响应流程。

2025-08-08 12:59:00 780

原创 rabbitMQ:RabbitMQ集群架构深度解析:从基础原理到字节跳动千亿级消息系统实践

作为阿里/字节跳动资深架构师,深入理解RabbitMQ集群模式是构建高可用消息系统的关键。本文将结合金融级交易、实时推荐等场景,揭秘RabbitMQ集群的高阶应用与调优策略。在字节跳动支付系统中,通过"镜像+联邦"混合模式,实现日均亿级交易消息的跨洲同步,SLA达到99.999%。掌握这些集群原理,方能构建出既可靠又灵活的消息中台。:同步时间从小时级降至分钟级。:金融系统全年零脑裂事故。:问题定位效率提升90%RabbitMQ集群。

2025-08-08 12:58:29 1014

原创 rabbitMQ:RocketMQ命名服务架构深度解析:为何自研NameServer取代ZooKeeper

在阿里云双11百万级TPS消息场景的锤炼下,RocketMQ团队做出了自主实现NameServer的战略选择,这一决策背后蕴含着对消息中间件核心需求的深刻理解。

2025-08-08 12:57:45 1043

原创 rabbiltMq:RabbitMQ事务机制深度解析:从原理到分布式事务实践

RabbitMQ的事务机制通过AMQP协议层的命令组合实现,其核心流程如下:fill:#333;color:#333;color:#333;fill:none;是否开启事务发送消息其他AMQP操作是否提交?提交事务回滚事务消息持久化到磁盘丢弃所有操作。

2025-08-08 12:57:14 803

原创 rabbitMQ:RabbitMQ核心架构深度解析:从基础概念到亿级消息系统设计

在字节跳动推荐系统中,通过Topic Exchange实现千级维度的消息路由,支撑日均千亿级消息处理。作为阿里/字节跳动资深架构师,深入理解RabbitMQ核心概念是构建高可靠消息系统的基础。本文将结合电商秒杀、实时日志等场景,剖析RabbitMQ的架构本质与高阶应用。作为阿里/字节跳动资深架构师,深入理解RabbitMQ核心概念是构建高可靠消息系统的基础。在字节跳动推荐系统中,通过Topic Exchange实现千级维度的消息路由,支撑日均千亿级消息处理。匹配binding key。

2025-08-08 12:56:39 924

原创 rabbitMQ:RabbitMQ路由键深度解析:从协议规范到千万级消息路由实践

在阿里云企业级消息服务中,我们对RabbitMQ的路由键机制进行了深度定制和优化。原始RabbitMQ对路由键(routing key)和绑定键(binding key)的长度限制为255字节,但在大规模业务场景下这一限制往往成为瓶颈。

2025-08-08 12:56:09 600

原创 RabbitMQ:RabbitMQ无法路由消息处理机制深度解析:从死信队列到生产实践

RabbitMQ中无法路由的消息处理机制是消息可靠性的重要保障,其核心流程如下:fill:#333;color:#333;color:#333;fill:none;是否是否是否是否生产者发布消息路由成功?进入队列配置了备用交换器?转发到备用交换器设置了mandatory标志?触发ReturnListener回调消息被静默丢弃备用交换器有匹配队列?进入备用队列进入死信队列或丢弃。

2025-08-08 12:54:54 698

原创 rocketMq:RabbitMQ死信交换机深度解析:从原理到亿级订单场景实践

作为阿里/字节跳动资深架构师,深入理解死信机制是构建高可靠消息系统的关键。本文将结合电商订单超时关闭等真实场景,揭秘RabbitMQ死信交换机的底层原理与高阶用法。在字节跳动电商系统中,通过动态TTL+死信分片设计,将订单关闭系统的SLA从99.9%提升至99.99%。:订单关闭准确率从92%提升至99.99%,人工干预降低80%:字节跳动在618大促期间,死信处理延迟稳定在5秒内。:电商订单系统重试成功率从65%提升至98%发布订单消息(ttl=30min):问题定位时间从小时级降至分钟级。

2025-08-08 12:54:12 633

原创 kafka:AMQP协议深度解析

AMQP(Advanced Message Queuing Protocol)作为面向消息中间件的开放标准协议,在阿里云企业级消息服务中扮演着关键角色。与Kafka等自定义协议不同,AMQP提供了更丰富的消息模型和事务支持。

2025-08-08 12:53:35 877

原创 kafka:Kafka请求处理全流程深度解析

Kafka采用Reactor模式+多阶段异步处理架构,完美支撑百万级QPSSendNetworkClientSocketServerAcceptorProcessorRequestChannelKafkaRequestHandlerKafkaApisReplicaManagerPartition1.2 关键线程分工线程类型数量配置职责Acceptor1个/监听端口接收新连接Processornum.network.threads网络IO处理Handlernum

2025-08-08 12:52:21 609

原创 kafka:Kafka架构演进:为何要抛弃ZooKeeper?深度解析KRaft架构设计

在阿里和字节跳动超大规模消息集群的实践中,ZooKeeper逐渐成为Kafka的性能瓶颈和运维痛点。

2025-08-08 12:51:09 949

原创 kafka:Kafka中Zookeeper的作用深度解析

Zookeeper在Kafka架构中扮演着"中枢神经系统"的角色,主要负责集群元数据管理和协调服务。以下是其核心功能的系统流程图:fill:#333;color:#333;color:#333;fill:none;Kafka Broker启动向Zookeeper注册临时节点Controller选举分区状态管理ISR集合维护Topic配置存储消费者偏移量管理动态配置传播。

2025-08-08 12:50:34 694

原创 kafka:Kafka索引设计深度解析

作为阿里/字节跳动资深工程师,深入理解Kafka索引设计是构建高并发消息系统的关键。本文将从底层原理出发,结合万亿级生产实践,揭秘Kafka索引设计的精髓。(索引密度提升2倍),使99%尾部查询延迟降低40%,印证了索引设计的可优化空间。掌握这些原理,方能设计出亿级吞吐的消息架构。索引机制是Kafka高吞吐、低延迟的核心基石,其精妙设计解决了海量数据下的高效定位难题。:99%延迟从28ms降至9ms,磁盘IO利用率从75%降至35%:传统二分查找导致内存页访问不连续,频繁触发缺页中断。

2025-08-08 12:49:34 608

原创 kafka:Kafka控制器事件处理全流程深度解析

监控指标控制器事件队列积压量状态机处理延迟百分位ZK Watcher触发频率调优建议分区数超过10万时启用批量处理部署独立的控制器节点(与Broker分离)调整参数(建议值30s)故障模式避免频繁的Topic创建/删除防范ZK会话超时监控控制器切换频率本文涉及的技术方案已在阿里云消息服务MS3.0和字节跳动消息平台落地验证,可支撑千万级分区的管理需求。

2025-08-08 12:48:33 947

原创 kafka:Kafka时间轮(Timing Wheel)实现深度解析

O(1)时间复杂度的任务增删惰性处理减少不必要的操作层级设计平衡精度和内存根据业务延迟分布调整tickMs和wheelSize监控任务堆积和触发延迟指标对关键任务实现死信队列+人工干预机制“时间轮不是万能的,但对高吞吐、低延迟的定时任务场景,它目前仍是JVM生态中最优解。” — Kafka核心开发者Jay Kreps。

2025-08-08 12:47:58 634

原创 rocketMq:消息队列推拉模式深度解析

推模式避坑指南避免广播风暴:设置合理的客户端ACK超时心跳优化:TCP KeepAlive+应用层心跳双保险连接管理:使用Netty等高性能框架拉模式最佳实践批处理大小:根据消息体大小动态调整偏移量提交:异步提交+同步补偿消费速率:监控指标混合模式实施要点协议转换:统一为Protobuf等高效格式质量降级:网络差时自动切换为拉模式灰度发布:新协议逐步 rollout本文方案已在字节跳动智能家居平台验证,支撑200万+设备稳定连接。

2025-08-07 14:41:00 402

原创 rocket:RocketMQ事务消息深度剖析与分布式事务方案对比

fill:#333;color:#333;color:#333;fill:none;成功失败生产者发送半消息执行本地事务本地事务状态?提交消息回滚消息消息可被消费消息丢弃Broker回查检查本地事务状态。

2025-08-07 14:40:25 226

原创 kafka:Kafka事务消息深度解析

fill:#333;color:#333;color:#333;fill:none;发送消息记录事务状态写入控制消息事务完成生产者消费者。

2025-08-07 14:39:51 405

原创 rocketMQ:消息队列推拉模式深度解析

fill:#333;color:#333;color:#333;fill:none;拉取模式等待请求定时拉取等待请求定时拉取Consumer1BrokerConsumer2推送模式主动推送主动推送Consumer1BrokerConsumer2。

2025-08-07 14:35:35 342

原创 rocketMq:消息堆积治理全链路方案

fill:#333;color:#333;color:#333;fill:none;是否是否监控报警根因分析是否消费者故障?消费者扩容是否生产激增?限流降级Broker调优负载均衡积压消费验证闭环。

2025-08-07 14:34:57 928

原创 rocketMQ:如何保证消息有序性

有序性保障黄金法则相同键:相同业务ID的消息使用相同分区键单线程:每个分区/队列使用单消费者线程状态校验:消费者端实现状态机校验生产环境经验监控关键指标:消息延迟、积压量、乱序率和实施混沌工程:定期测试网络分区场景性能优化技巧热点分离:将热点数据分配到独立分区批量提交:在保证有序前提下批量ACK本地缓存:消费者预加载相关数据本文方案已在阿里云双11核心交易链路验证,支撑峰值百万级有序消息处理。实际应用时请根据业务特点调整参数,建议在预发布环境充分测试有序性保障机制。

2025-08-07 14:33:57 747

原创 rocketMQ:分布式系统幂等性设计

fill:#333;color:#333;color:#333;fill:none;消息重复根源生产者重试消费者重复拉取消息队列重投网络分区未收到Broker ACK消费超时未提交offset消费者崩溃恢复。

2025-08-07 14:26:30 214

原创 rocketMQ:消息零丢失架构设计

fill:#333;color:#333;color:#333;fill:none;生产者发送Broker持久化Broker高可用消费者确认死信处理人工干预。

2025-08-07 14:25:57 250

原创 rocketMq:消息队列核心术语深度解析与高并发架构实践

核心设计原则异步化:提升系统吞吐能力解耦:降低系统间依赖削峰:应对流量洪峰生产环境经验监控指标:堆积量、消费延迟、错误率容量规划:分区数=期望吞吐/单分区能力灾备方案:同城双活+异地灾备常见避坑指南避免单分区热点:合理设计分区键控制消息大小:单消息建议<1MB合理设置超时:消费超时>业务处理最长时间本文方案已在字节跳动电商核心系统验证,支撑日均百亿级消息处理。实际应用时请根据业务特点调整参数。

2025-08-07 14:24:57 755

原创 mysql:MySQL redo log机制

redo log设计本质物理日志 vs binlog的逻辑日志循环写入的固定空间管理幂等性设计(LSN机制)生产环境经验高峰期临时调整使用PCIe SSD设备提升IOPS定期监控状态Java应用层配合// 批量插入最佳实践// 每500条提交一次i++) {未来演进方向基于PMEM(持久内存)的新型日志架构机器学习驱动的动态刷盘策略与NewSQL存储引擎的融合设计本文所有方案均在字节跳动电商核心交易系统验证,经过618/双十一大促考验。实际应用时请根据业务特点调整参数。

2025-08-07 12:02:34 291

原创 mq:消息队列模型深度解析

在现代分布式系统中,消息队列主要采用以下几种核心模型:fill:#333;color:#333;color:#333;fill:none;消息队列模型点对点模型发布订阅模型请求响应模型特点一对一消息独占特点一对多消息广播特点同步通信即时响应。

2025-08-07 12:02:03 220

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除