ubuntu20.04基于YOLOV5图像分类环境配置
安装opencv、cuda、tensorrt、clion
Ubuntu20.04安装Nvidia显卡驱动+CUDA11.1+cuDNN8.0.5
Ubuntu20.04下安装Clion
安装Anaconda、pytharm
ubuntu20.04安装Anaconda并默认激活conda base环境
Ubuntu20.04安装Pycharm
下载tensorRT 源码 和yolov5-7.0源码(2个版本要一致)
yolov5-7.0
https://github.com/ultralytics/yolov5/tree/v7.0
tensorRT
https://github.com/wang-xinyu/tensorrtx/tree/yolov5-v7.0/yolov5
解压tensorRT 源码 和yolov5-7.0源码
使用Anaconda创建python环境
conda create -n 虚拟环境名称 python=自己需要的python版本 eg:conda create -n yolov5 python=3 yolov5 为虚拟环境(可以随便取) python=3.8是指定该虚拟环境python的版本为3.8(可以指定)
进入/切换虚拟环境activate 虚拟环境名称
conda activate yolov5
在新建虚拟环境yolov5批量在线安装yolov5-7.0文件夹内requirements.txt(也可以使用下面pytharm终端下载)
pip install -r /home/yolov5-7.0/requirements.txt
使用pytharm打开yolov5-7.0源码
将我们下载好的yolov5的代码解压,然后用一款IDE打开(我用的是pycharm),打开之后整个代码目录如下图:
现在来对代码的整体目录做一个介绍:
├──
data:主要是存放一些超参数的配置文件(这些文件(yaml文件)是用来配置训练集和测试集还有验证集的路径的,其中还包括目标检测的种类数和种类的名称);还有一些官方提供测试的图片。如果是训练自己的数据集的话,那么就需要修改其中的yaml文件。但是自己的数据集不建议放在这个路径下面,而是建议把数据集放到yolov5项目的同级目录下面。
├──
models:里面主要是一些网络构建的配置文件和函数,其中包含了该项目的四个不同的版本,分别为是s、m、l、x。从名字就可以看出,这几个版本的大小。他们的检测测度分别都是从快到慢,但是精确度分别是从低到高。这就是所谓的鱼和熊掌不可兼得。如果训练自己的数据集的话,就需要修改这里面相对应的yaml文件来训练自己模型。
├── utils:存放的是工具类的函数,里面有loss函数,metrics函数,plots函数等等。
├── weights:放置训练好的权重参数。
├── detect.py:利用训练好的权重参数进行目标检测