ubuntu20.04基于YOLOV5图像分类环境配置读这篇就够了

本文详述了在Ubuntu20.04上配置YOLOV5图像分类环境的步骤,包括安装opencv、cuda、tensorrt、clion,创建Anaconda环境,下载yolov5-7.0和tensorRT源码,使用PyCharm进行代码编辑,训练模型,模型推理与评估,以及通过Docker和nvidia-docker部署Triton服务。此外,还介绍了如何在系统中安装SSH服务和使用Clion进行远程开发。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ubuntu20.04基于YOLOV5图像分类环境配置

安装opencv、cuda、tensorrt、clion

Ubuntu20.04安装Nvidia显卡驱动+CUDA11.1+cuDNN8.0.5
Ubuntu20.04下安装Clion

安装Anaconda、pytharm

ubuntu20.04安装Anaconda并默认激活conda base环境
Ubuntu20.04安装Pycharm

下载tensorRT 源码 和yolov5-7.0源码(2个版本要一致)

yolov5-7.0

https://github.com/ultralytics/yolov5/tree/v7.0

tensorRT

https://github.com/wang-xinyu/tensorrtx/tree/yolov5-v7.0/yolov5

解压tensorRT 源码 和yolov5-7.0源码

使用Anaconda创建python环境

conda create -n 虚拟环境名称 python=自己需要的python版本 eg:conda create -n yolov5 python=3 yolov5 为虚拟环境(可以随便取) python=3.8是指定该虚拟环境python的版本为3.8(可以指定)

进入/切换虚拟环境activate 虚拟环境名称

conda activate yolov5

在新建虚拟环境yolov5批量在线安装yolov5-7.0文件夹内requirements.txt(也可以使用下面pytharm终端下载)

pip install -r /home/yolov5-7.0/requirements.txt 

使用pytharm打开yolov5-7.0源码

将我们下载好的yolov5的代码解压,然后用一款IDE打开(我用的是pycharm),打开之后整个代码目录如下图:
在这里插入图片描述
现在来对代码的整体目录做一个介绍:
├──
data:主要是存放一些超参数的配置文件(这些文件(yaml文件)是用来配置训练集和测试集还有验证集的路径的,其中还包括目标检测的种类数和种类的名称);还有一些官方提供测试的图片。如果是训练自己的数据集的话,那么就需要修改其中的yaml文件。但是自己的数据集不建议放在这个路径下面,而是建议把数据集放到yolov5项目的同级目录下面。

├──
models:里面主要是一些网络构建的配置文件和函数,其中包含了该项目的四个不同的版本,分别为是s、m、l、x。从名字就可以看出,这几个版本的大小。他们的检测测度分别都是从快到慢,但是精确度分别是从低到高。这就是所谓的鱼和熊掌不可兼得。如果训练自己的数据集的话,就需要修改这里面相对应的yaml文件来训练自己模型。

├── utils:存放的是工具类的函数,里面有loss函数,metrics函数,plots函数等等。

├── weights:放置训练好的权重参数。

├── detect.py:利用训练好的权重参数进行目标检测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值