视觉SLAM——双目相机三维重建

本文介绍了使用OpenCV进行双目相机的三维重建过程,包括相机参数设置、图像配对及深度图和点云图的生成。通过高博提供的相机参数和图片示例,展示了运行结果,并分享了作者自己的三维点云图动态展示。代码可能经过了修改。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CMakeLists.txt

cmake_minimum_required(VERSION 3.17)
project(untitled)
find_package(Pangolin REQUIRED)
find_package( OpenCV REQUIRED )

set(CMAKE_CXX_STANDARD 14)
include_directories(${OpenCV_INCLUDE_DIRS}
### 水下双目相机三维重建SLAM技术概述 水下环境中的三维重建和同步定位与建图(SLAM)是一项复杂的技术挑战,主要因为水下的光学特性会显著影响图像的质量。光线在水中传播时会发生散射和吸收,这不仅降低了能见度,还改变了颜色分布,从而增加了处理难度。 #### 双目相机三维重建原理 双目立体视觉是一种常见的三维重建方法,其基本思想是从两个不同视点获取同一场景的两幅图像,并通过计算这两幅图像之间的视差来推导出深度信息[^1]。对于水下应用场景而言,这种技术需要特别考虑以下几个方面: - **校正畸变**:由于镜头浸入水中会产生额外的折射效应,必须对采集到的数据进行预处理以消除这些失真。 - **增强对比度**:为了改善因光衰减而导致的画面模糊不清的情况,可能需要用到一些图像增强算法提高细节可见性。 #### SLAM算法及其优化策略 针对水下载体设计的SLAM系统通常融合多种传感模态的信息源共同工作。例如BlueRov SLAM利用了多普勒速度计(Doppler Velocity Log)、惯性测量单元(Inertial Measurement Unit),以及侧扫声呐(Side Scan Sonar)[^4]等多种设备协同完成任务。然而纯粹依靠光学手段构建地图并追踪位置同样可行但更具挑战性。 一种有效的途径是采用基于特征的方法来进行状态估计。具体来说,可以从每帧画面提取稀疏的关键点作为地标;接着运用扩展卡尔曼滤波器(Extended Kalman Filter,EKF)或者粒子滤波(Particle Filtering,PF)等贝叶斯框架更新机器人位姿假设的同时维护一张全局拓扑结构的地图描述符集合。另外还有研究探索过如何结合线条这样的几何约束条件进一步提升鲁棒性和准确性[^2]。 此外值得注意的是近年来兴起的一种新颖思路——即引入概率密度函数表征空间内的不确定性区域并通过连续形式表达整个场域内各处可能性分布情况进而形成所谓“隐式表面表示”。这种方法的一个典型代表便是由Keetha等人提出的SplaTAM方案,在该体系里真实世界被抽象成为一系列离散化的三维高斯基元构成的整体模型,借此能够生成高度逼真的色彩渲染效果同时也具备较强的抗干扰能力适应恶劣工况需求[^3]。 ```python import numpy as np from scipy.spatial.transform import Rotation as R def compute_pose_change(prev_keypoints, curr_keypoints): """ 计算前后两组关键点间的相对变换关系 参数: prev_keypoints (np.ndarray): 上一时刻检测到的关键点坐标列表 curr_keypoints (np.ndarray): 当前时刻检测到的关键点坐标列表 返回值: tuple: 包含旋转和平移分量的结果向量 """ # 假设已知对应关系... rotation_matrix = ... # 使用某种匹配准则求解最佳刚体运动参数矩阵 translation_vector = ... rot_obj = R.from_matrix(rotation_matrix) return rot_obj.as_euler('xyz', degrees=True), translation_vector.tolist() ``` 上述代码片段展示了一个简化版的姿态变化估算过程示意程序段落,实际工程实践中还需要综合考量更多因素才能达到理想性能指标水平。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只野生的善逸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值