视觉SLAM——3D-2D最小化重投影误差求解PnP(OpenCV版本)

该博客介绍了如何使用OpenCV的EPnP算法解决PnP问题,通过RGB-D相机的深度图获取3D点,结合2D特征点进行非线性优化。示例代码展示了从深度图获取3D坐标,然后在另一图像的2D点上应用PnP算法的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CMakeLists.txt

cmake_minimum_required(VERSION 2.8)
project(vo1)

set(CMAKE_BUILD_TYPE "Release")
add_definitions("-DENABLE_SSE")
set(CMAKE_CXX_FLAGS "-std=c++11 -O2 ${SSE_FLAGS} -msse4")
list
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只野生的善逸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值