使用Lambda表达式的基本操作

使用Lambda表达式进行集合遍历

❌ 未使用Lambda表达式:

List list = Arrays.asList("apple", "banana", "orange");
for (String fruit : list) {
    System.out.println(fruit);
}

✅ 使用Lambda表达式:

List list = Arrays.asList("apple", "banana", "orange");
list.forEach(fruit -> System.out.println(fruit));

使用Lambda表达式进行排序

❌ 未使用Lambda表达式:

List list = Arrays.asList("apple", "banana", "orange");
Collections.sort(list, new Comparator() {
    public int compare(String s1, String s2) {
        return s1.compareTo(s2);
    }
});

✅ 使用Lambda表达式:

List list = Arrays.asList("apple", "banana", "orange");
Collections.sort(list, (s1, s2) -> s1.compareTo(s2));

使用Lambda表达式进行过滤

❌ 未使用Lambda表达式:

List list = Arrays.asList("apple", "banana", "orange");
List filteredList = new ArrayList();
for (String fruit : list) {
    if (fruit.startsWith("a")) {
        filteredList.add(fruit);
    }
}

✅ 使用Lambda表达式:

List list = Arrays.asList("apple", "banana", "orange");
List filteredList = list.stream().filter(fruit -> fruit.startsWith("a"))
								.collect(Collectors.toList());

使用Lambda表达式进行映射

❌ 未使用Lambda表达式:

List list = Arrays.asList("apple", "banana", "orange");
List lengths = new ArrayList();
for (String fruit : list) {
    lengths.add(fruit.length());
}

✅ 使用Lambda表达式:

List list = Arrays.asList("apple", "banana", "orange");
List lengths = list.stream()
                	.map(fruit -> fruit.length())
                	.collect(Collectors.toList());

使用Lambda表达式进行归约

❌ 未使用Lambda表达式:

List list = Arrays.asList(1, 2, 3, 4, 5);
int sum = 0;
for (int i : list) {
	sum += i;
}

✅ 使用Lambda表达式:

List list = Arrays.asList(1, 2, 3, 4, 5);
int sum = list.stream().reduce(0, (a, b) -> a + b);

使用Lambda表达式进行分组

❌ 未使用Lambda表达式:

List list = Arrays.asList("apple", "banana", "orange");
Map<Integer, List> grouped = new HashMap<Integer, List>();
for (String fruit : list) {
    int length = fruit.length();
    if (!grouped.containsKey(length)) {
        grouped.put(length, new ArrayList());
    }
    grouped.get(length).add(fruit);
}

✅ 使用Lambda表达式:

List list = Arrays.asList("apple", "banana", "orange");
Map<Integer, List> grouped = list.stream()
				.collect(Collectors.groupingBy(fruit -> fruit.length()));

使用Lambda表达式进行函数式接口的实现

❌ 未使用Lambda表达式:

public interface MyInterface {
    public void doSomething(String input); 
}

MyInterface myObject = new MyInterface() {
	public void doSomething(String input) {
		System.out.println(input);
	}
};

myObject.doSomething("Hello World");

✅ 使用Lambda表达式:

MyInterface myObject = input -> System.out.println(input);
myObject.doSomething("Hello World");

使用Lambda表达式进行线程的创建

❌ 未使用Lambda表达式:

Thread thread = new Thread(new Runnable() {
    public void run() {
    	System.out.println("Thread is running.");
    }
});
thread.start();

✅ 使用Lambda表达式:

Thread thread = new Thread(() -> System.out.println("Thread is running."));
thread.start();

使用Lambda表达式进行Optional的操作

❌ 未使用Lambda表达式:

String str = "Hello World";
if (str != null) {
	System.out.println(str.toUpperCase());
}

✅ 使用Lambda表达式:

Optional str = Optional.ofNullable("Hello World");
str.map(String::toUpperCase)
	.ifPresent(System.out::println);

使用Lambda表达式进行Stream的流水线操作

❌ 未使用Lambda表达式:

List list = Arrays.asList("apple", "banana", "orange");
List filteredList = new ArrayList();
for (String fruit : list) {
    if (fruit.startsWith("a")) {
        filteredList.add(fruit.toUpperCase());
    }
}
Collections.sort(filteredList);

✅ 使用Lambda表达式:

List list = Arrays.asList("apple", "banana", "orange");
List filteredList = list.stream().filter(fruit -> fruit.startsWith("a"))
								.map(String::toUpperCase)
								.sorted()
								.collect(Collectors.toList());
### 如何使用 Lambda 表达式处理 Java Stream API 操作 #### 创建 Stream 并应用中间操作与终端操作 通过 `Stream` 接口可以方便地对集合类对象执行一系列转换操作。下面是一个简单的例子,展示了如何利用 Lambda 表达式来创建流并对其进行过滤、映射以及收集等常见操作。 ```java import java.util.Arrays; import java.util.List; import java.util.stream.Collectors; public class StreamExample { public static void main(String[] args) { List<String> names = Arrays.asList("Alice", "Bob", "Charlie"); // 将列表转为大写形式的新列表 List<String> upperCaseNames = names.stream() .map(name -> name.toUpperCase()) // 使用 map 方法配合 lambda 对每个元素调用 toUpperCase() 函数 .collect(Collectors.toList()); // 终端操作 collect 收集结果到新的列表中 System.out.println(upperCaseNames); } } ``` 此代码片段首先定义了一个字符串类型的列表 `names`,接着通过 `.stream()` 方法将其转化为一个流实例;之后运用了 `map` 中间操作加上 Lambda 表达式实现了将所有名字变为全大写的变换过程[^2]。 #### 进一步的应用——筛选和排序 除了基本的数据转换外,还可以借助于其他多种中间操作如 `filter` 和 `sorted` 来实现更复杂的逻辑: ```java List<Person> people = ... ;// 假设这里有一个 Person 类型的对象列表 people.stream() .filter(person -> person.getAge() >= 18) // 只保留年龄大于等于18岁的个体 .sorted((p1, p2) -> Integer.compare(p1.getAge(), p2.getAge())) // 按照年龄升序排列 .forEach(System.out::println); // 输出每个人的信息 ``` 上述代码段先是对人员进行了成年与否的判断(即只留下成年人),再按照他们的年龄从小到大重新安排顺序最后逐个打印出来。这里的比较器也采用了简洁明了的形式 `(p1, p2)` 而不是完整的匿名内部类版本[^3]。 #### 结合方法引用优化表达式 当函数体仅包含单一的方法调用时,可以用更加紧凑的方式表示它—这就是所谓的 **方法引用**: ```java List<String> words = Arrays.asList("hello", "world"); words.stream().forEach(System.out::println); // 等价于 forEach(word -> System.out.println(word)) ``` 在这个例子中,`System.out::println` 是标准库提供的静态方法的一个引用,代替了原本较为冗长的 Lambda 形式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值