- 博客(7)
- 收藏
- 关注
原创 Scanpy_3 多个样本的单细胞分析流程(scvi)
如果你需要使用深度学习库和框架来处理大规模的计算任务,建议使用专门的显卡(例如 NVIDIA 的 GeForce 或 Quadro 系列显卡),或者使用云计算服务来获得更高的计算能力和更大的显存。在单细胞RNA测序数据分析中,批次效应是一个常见的问题,它可能导致不同批次之间的细胞分布存在差异,影响细胞类型的鉴定和分析。该流程使用scvi方法整合:scvi采用了一种基于深度生成模型的算法来降维和批次效应校正,相比传统的PCA或t-SNE等降维方法,该算法可以更好地处理单细胞RNA测序数据中的噪声和批次效应。
2023-04-28 15:06:34
3668
原创 Scanpy_2 多个样本的单细胞分析流程(ingest)
综上,这段代码的作用是使得多个数据集中的变量保持一致,只保留在所有数据集中共有的变量,去掉不在所有数据集中都出现的变量,以方便后续的数据分析和处理。方法实际上是一种非对称数据集的整合方法,因为它将标签从参考数据集映射到待映射数据集中,但是没有将待映射数据集的标签映射回参考数据集中。总的来说,这段代码为每个数据集中的样本添加了一个标识符,以便在合并数据集时能够区分每个样本来自哪个数据集。这段代码的作用是统计合并后的数据集中,每个样本和每个聚类包含的细胞数,并计算每个聚类在每个样本中的百分比。
2023-04-28 15:05:41
1421
原创 PCA 、 UMAP 、leiden,t-SNE区别
PCA、UMAP、t-SNE都是非监督的降维算法,可以用于发现高维数据中的结构。其中PCA是一种线性降维方法,将数据在原始特征空间中进行正交变换,得到新的低维特征空间。t-SNE和UMAP是非线性降维方法,它们试图在低维空间中保留数据点之间的局部结构,而忽略全局结构。Leiden是一种聚类算法,可以将类似的数据点分组到一起形成簇。它基于模块化最大化原理,试图找到一个最优的分割,使得分割后的子图内部密度较大,子图之间联系较小。与传统的聚类算法相比,Leiden算法更适用于处理大规模高维数据。
2023-04-28 09:21:46
2584
1
原创 怎么学习python的数据分析?
怎么学习python的数据分析?学习Python数据分析需要掌握一些基本的编程知识以及相关的数学和统计学知识。以下是一些学习Python数据分析的步骤:入门Python编程语言:学习Python的基础语法,数据类型、条件语句、循环语句、函数等。可以通过在线教程、书籍、视频课程等途径来学习。学习NumPy和Pandas库:这两个库是Python数据分析的基石。NumPy是用于科学计算的库,提供了一个强大的多维数组对象和各种派生对象(如掩码数组和矩阵)。Pandas是基于NumPy的库,提供了数据结构和
2023-04-28 09:20:38
195
1
原创 最全的Scanpy教程笔记 Preprocessing and clustering 3k PBMCs
代码来源scanpy的官方教程代码的解释来源web本人也在学习scanpy分析单细胞数据,但是网络上对于scanpy的流程并没有太多详细的解释。这些是我上网搜索的相关解释,仅供参考,不喜勿视。
2023-03-28 16:40:29
3328
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人