大数据之Spark入门案例

本文通过一个PySpark的WordCount案例,介绍如何利用Spark计算HDFS上csv文件中每个单词的数量。首先,确保Hadoop集群和HDFS文件准备就绪,然后创建SparkContext,使用textFile、flatMap、Map和reduceByKey API来处理数据,最后展示运行结果并强调理解Spark API的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

上篇文章主要介绍了PySpark开发环境的搭建,接下来就是Spark的入门案例,通过入门案例进一步了解Spark的运行逻辑,开发环境的搭建可以参考文章:Spark开发环境准备Spark环境搭建

一、案例简介

PySpark入门案例读取HDFS上的csv文件,csv文件中有很多单词,每个单词以空格隔开,运行PySpark程序,计算出csv文件中每个单词的数量。

二、前期准备

本次演示的代码计算部分由Spark负责,资源调度由Hadoop的Yarn负责,代码开发之前需要保证:

  1. Hadoop集群的正常运行
    在这里插入图片描述

  2. 将需要读取的txt文件上传到HDFS上,
    (1)WordCount文件内容

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值