2025华为杯研赛C题保姆级教程思路分析
C题题目:围岩裂隙精准识别与三维模型重构
1 总体分析
1.1 问题背景:
煤炭是我国的主要能源,国家高度重视煤矿安全、高效和智能化开采。井工煤矿开采涉及复杂的地下工程系统,其中巷道作为关键通道,承担通风、运输等功能。然而,巷道围岩内部的裂隙网络肉眼难见,如果探测不清或不及时控制,极易引发冒顶、突水、瓦斯突出等安全事故,严重威胁生命财产安全。传统探测方法如岩芯取样耗时耗力,而钻孔成像技术通过利用锚杆支护钻孔进行高精度扫描,实现了岩层内部结构的可视化数据采集,为裂隙识别提供了高效手段。
钻孔成像技术的核心是通过探头(如高清摄像头)对孔壁进行360°全景扫描,生成展开图。在展开图中,裂隙通常表现为“正弦状”曲线,这是由于平面裂隙与钻孔中轴线斜交时在柱坐标系下的投影结果。但图像中也存在多种干扰因素,如岩石天然纹理、钻头钻进痕迹、泥浆污染等,这些干扰与真实裂隙特征相似,增加了识别难度。
1.2 问题设定:
本题目共包含四个子问题,逐步从裂隙识别过渡到三维重构:
问题1:聚焦于钻孔成像展开图中裂隙像素的自动识别,需处理干扰因素并输出二值化图像。
问题2:针对“正弦状”裂隙进行定量分析,通过数学模型提取振幅、周期等参数。
问题3:处理复杂裂隙,计算粗糙度指数(JRC),并讨论采样方法对结果的影响。
问题4:整合多钻孔数据,进行裂隙连通性分析和三维重构,并提出补充钻孔建议。
1.3 核心要点:
数据理解与预处理:
所有钻孔直径均为30mm(周长约94.25mm),图像坐标系以横轴表示周向距离(0~94.25mm),纵轴表示轴向深度。附件1、2、3的图像分辨率为244x1350像素,DPI为65.73;附件4分辨率为864x9167像素,DPI为232.85。预处理时需注意光照校正、噪声去除(如泥浆条纹的定向滤波),以确保数据质量。
干扰因素处理:岩石纹理、钻进痕迹和泥浆污染(如图5所示)可能 mimic 裂隙特征,需在模型中集成抗干扰机制,例如使用图像增强技术或机器学习分类器区分真假裂隙。
模型构建要点:
问题1:需设计像素级分类模型(如U-Net语义分割),输出二值图像(裂隙黑色,其他白色)。重点处理附件1中的图1-1、1-2、1-3,并提交所有结果附件。
问题2:采用曲线拟合算法(如最小二乘法或Hough变换)对正弦曲线进行参数提取,结果以表格形式呈现。
问题3:JRC计算需离散化裂隙轮廓线,注意采样密度(N值)对结果的影响,并探讨更优的采样方法(如基于曲率的自适应采样)。
问题4:利用空间坐标系(右手直角坐标系,x轴正南、y轴正东、z轴向上)进行多钻孔数据融合,评估连通概率时需考虑裂隙几何特征和JRC值。
另外,模型需兼顾准确性和效率,以支持实时处理需求。
在问题4中,补充钻孔位置建议应基于不确定性分析,优先考虑资源限制和工程可行性。
2 问题分析与解题思路
2.1 问题一思路
问题一:基于像素分类的裂隙智能识别详细建模过程
问题一的目标是实现对钻孔成像展开图中裂隙像素的自动识别,并生成二值化图像(裂隙像素黑色,其他白色)。由于图像中存在岩石纹理、钻进痕迹、泥浆污染等干扰因素,建模过程需集成图像预处理、特征提取、像素分类和后处理优化。整体流程包括数据准备、预处理、模型训练/推理和结果生成,强调抗干扰能力和准确性。
详细建模步骤
算法推荐:
预处理算法:
- CLAHE:用于光照校正,OpenCV中的cv2.createCLAHE()。
- Gabor滤波器:用于检测竖直条纹,参数设置方向为90度。
- 非局部均值去噪:OpenCV中的cv2.fastNlMeansDenoising()。
分类模型算法:
- U-Net:使用PyTorch或TensorFlow实现,输入尺寸调整为244x1350或分块处理。
- 替代方案:DeepLabv3+或PSPNet for 更复杂的场景。
后处理算法:
- 形态学操作:OpenCV中的cv2.morphologyEx()。
- 连通组件分析:OpenCV中的cv2.connectedComponentsWithStats()。
建议大家使用matlab/ python进行求解。今晚将会更新具体的解体代码和结果图表,大家敬请期待。
2-4问后续更新
其他要点注意:
- 计算效率:图像尺寸较大,需优化算法速度,如使用GPU加速深度学习推理。
- 泛化能力:模型应在不同干扰场景下测试,确保鲁棒性。
其中更详细的思路、各题目思路、代码、讲解视频、成品论文及其他相关内容,可以点击下方卡片!