AB_test用于解决什么问题?
为了验证一个策略的效果,同一时段内,给实验组(采取优化的策略)与对照组(采取原策略),对比看那种策略的效果的实验方法。
关于ABtest的两种错误观念
- 判断策略好坏,靠直觉好于做ABtest。
面对的场景不同,可能采取同一优化策略,效果是不同的;曾经采取优化策略不奏效,不代表在新环境下策略无效。 - 不是说,什么时候都必须abtest。有些产品还在早期,用户量太小,是没法通过abtest得出靠谱结论的;有些产品体验的改进是可以通过线下用户调研得到答案的
ABtest的具体操作步骤是什么?
待补充
如何实现ABtest,工具有哪些?
- http://abtestguide.com/calc/
这个网站计算的指标比较完善,p值,z值和其他很多本文未介绍的指标都有。这个网站还考虑了单侧实验和双侧实验的情况。不过它的问题是不太稳定(可能和我这边的网络环境有关系)。 - https://vwo.com/ab-split-test-significance-calculator/
这个网站只计算了单侧检验的p value。好处是比较稳定。 - https://vwo.com/ab-split-test-duration/
数据量不够,可以用这个工具看看是否实验时间不足。
需要注意的问题是什么?
注意控制变量,除实验策略不同以外,其他场景尽量保持一致,减少外部因素干扰
- 时间一致性;
- 数据分布的一致性;
- 统计显著的结果才可以引导决策;
- 实验分组设计上(流量分布要均匀)
特点
- AB test 帮助你在现有流量中获取更多的收益,或者在现有流量中提升ROI,或者说在现有用户基础上提升活跃度,但是在衡量对用户量增长或者获取新流量是否有帮助上,ab test或者所起作用不大。
- AB test还有一个缺点,就是只能做小范围的效果比较,比如作用于同一个场景使用不同算法的效果比较;比如它不能告诉我们,A业务的推荐算法是否比B业务的推荐算法做得好;也就是说它不能衡量一个模型的迁移和泛化能力;
教程
AB_test 英文教程:https://exp-platform.com/2017abtestingtutorial/
参考文章
https://www.cnblogs.com/zichun-zeng/p/9042779.html