完全背包
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。
依然举这个例子:
背包最大重量为4。
物品为:
重量 | 价值 | |
---|---|---|
物品0 | 1 | 15 |
物品1 | 3 | 20 |
物品2 | 4 | 30 |
每件商品都有无限个!
问背包能背的物品最大价值是多少?
01背包和完全背包唯一不同就是体现在遍历顺序上,
01背包的核心代码:
for(int i = 0; i < weight.size(); i++) {
// 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) {
// 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。
**而完全背包的物品是可以添加多次的,所以要从小到大去遍历,**即:
// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) {
// 遍历物品
for(int j = weight[i]; j <= bagWeight ; j++) {
// 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
dp状态图如下:
01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。
在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!
因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。
完整代码:
// 先遍历物品,在遍历背包
void test_CompletePack() {
vector<int> weight = {
1, 3, 4};
vector<int> value = {