算法训练营day44|动态规划 part06:完全背包 (完全背包、 LeetCode518. 零钱兑换 II、377. 组合总和 Ⅳ )

完全背包

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。
依然举这个例子:

背包最大重量为4。

物品为:

重量 价值
物品0 1 15
物品1 3 20
物品2 4 30

每件商品都有无限个!
问背包能背的物品最大价值是多少?

01背包和完全背包唯一不同就是体现在遍历顺序上,
01背包的核心代码:

for(int i = 0; i < weight.size(); i++) {
   
    // 遍历物品
    for(int j = bagWeight; j >= weight[i]; j--) {
   
    // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    }
}

01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。

**而完全背包的物品是可以添加多次的,所以要从小到大去遍历,**即:

// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++) {
   
    // 遍历物品
    for(int j = weight[i]; j <= bagWeight ; j++) {
   
    // 遍历背包容量
        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    }
}

dp状态图如下:
在这里插入图片描述
01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。

在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!
因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。
完整代码:

// 先遍历物品,在遍历背包
void test_CompletePack() {
   
   
    vector<int> weight = {
   
   1, 3, 4};
    vector<int> value = {
   
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值