描述
给定一个二叉树root和一个值 sum ,判断是否有从根节点到叶子节点的节点值之和等于 sum 的路径。
1.该题路径定义为从树的根结点开始往下一直到叶子结点所经过的结点
2.叶子节点是指没有子节点的节点
3.路径只能从父节点到子节点,不能从子节点到父节点
4.总节点数目为n
例如:
给出如下的二叉树, ���=22 sum=22,
返回true,因为存在一条路径 5→4→11→25→4→11→2的节点值之和为 22
数据范围:
1.树上的节点数满足 0≤n≤10000
2.每 个节点的值都满足 ∣val∣≤1000
要求:空间复杂度 O(n),时间复杂度O(n)
进阶:空间复杂度 O(树的高度),时间复杂度O(n)
示例1
输入:
{5,4,8,1,11,#,9,#,#,2,7},22
返回值:
true
示例2
输入:
{1,2},0
返回值:
false
示例3
输入:
{1,2},3
返回值:
true
示例4
输入:
{},0
返回值:
false
解题思路:
我们可以使用深度优先搜索(DFS)来遍历整个二叉树,并记录路径上的节点值之和。当遍历到叶子节点时,判断路径上的节点值之和是否等于sum,如果是,则返回true。
具体步骤如下:
- 定义一个变量result,用于存储是否存在满足条件的路径,初始值为false。
- 定义一个变量pathSum,用于存储当前路径上的节点值之和,初始值为0。
- 遍历整个二叉树,如果当前节点为空,则返回。
- 如果当前节点不为叶子节点,则将当前节点的值加入pathSum中,并递归遍历左右子树。
- 如果当前节点为叶子节点,则判断pathSum是否等于sum,如果是,则将result设为true。
- 返回result。
Java代码实现如下:
public boolean hasPathSum(TreeNode root, int sum) {
if (root == null) {
return false;
}
if (root.left == null && root.right == null && root.val == sum) {
return true;
}
return hasPathSum(root.left, sum - root.val) || hasPathSum(root.right, sum - root.val);
}