377. 组合总和 Ⅳ
给你一个由 不同 整数组成的数组 nums
,和一个目标整数 target
。请你从 nums
中找出并返回总和为 target
的元素组合的个数。
题目数据保证答案符合 32 位整数范围。
示例 1:
输入:nums = [1,2,3], target = 4
输出:7
解释:
所有可能的组合为:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
请注意,顺序不同的序列被视作不同的组合。
示例 2:
输入:nums = [9], target = 3
输出:0
提示:
- 1 <= nums.length <= 200
- 1 <= nums[i] <= 1000
- nums 中的所有元素 互不相同
- 1 <= target <= 1000
进阶: 如果给定的数组中含有负数会发生什么?问题会产生何种变化?如果允许负数出现,需要向题目中添加哪些限制条件?
思路:(动态规划、完全背包)
数组nums中的整数使用次数的限制,此问题属于 0-1背包 的 完全背包 ,解法和 0-1背包 类似:
该问题求元素组合数,是带顺序的,也就是说整数必须按一定的顺序放入背包:
- 求解 顺序的完全背包 问题时,对 物品的迭代 应该 放在最里层,对 背包的迭代 放在外层,只有这样才能让物品 按一定顺序 放入背包中。
- 定义
dp
数组:dp[i]
表示 总和为i
的元素组合数; - 状态转移方程为:
- 初始状态:
d p [ 0 ] = 1 dp[0] = 1 dp[0]=1 - 如果
nums[j]
<=i
时,加上nums[j]
的组合数等于 不加nums[j]
的组合数:
d p [ i ] + = d p [ i − n u m s [ j ] ] dp[i] += dp[i - nums[j]] dp[i]+=dp[i−nums[j]]
- 初始状态:
代码:(Java / C++)
java
public class CombinationSum4 {
public static void main(String[] args) {
// TODO Auto-generated method stub
int[] nums = {1, 2, 3};
int target = 4;
System.out.println(combinationSum4(nums, target));
}
public static int combinationSum4(int[] nums, int target) {
//排列带顺序,求解有顺序的完全背包时,对物品的的迭代放里面,对背包的迭代放外面
//只有这样才能让物品按一定顺序放入背包
int[] dp = new int[target + 1];
for(int i = 1; i <= target; i++) {
for(int num : nums) {
if(i == num ) {
dp[i]++;
}
if(i > num) {
dp[i] += dp[i - num];
}
}
}
return dp[target];
}
}
C++
#include <iostream>
#include <vector>
using namespace std;
int combinationSum4(vector<int>& nums, int target) {
//排列带顺序,求解有顺序的完全背包时,对物品的的迭代放里面,对背包的迭代放外面
//只有这样才能让物品按一定顺序放入背包
vector<int> dp(target + 1, 0);
dp[0] = 1;
for (int i = 1; i <= target; i++) {
for (auto num : nums) {
if (i >= num) {
//c++计算的中间结果会溢出,但因为最终结果是int
//因此每次计算完都对INT_MAX取模,0LL是将计算结果提升到long long类型
dp[i] = (0LL + dp[i] + dp[i - num]) % INT_MAX;
}
}
}
return dp[target];
}
int main() {
vector<int> nums = {1, 2, 3};
int target = 4;
cout << combinationSum4(nums, target) << endl;
system("pause");
return 0;
}
运行结果:
复杂度分析:
- 时间复杂度:
O
(
n
∗
t
a
r
g
e
t
)
O(n * target)
O(n∗target) , target为 目标整数
target
,len 为nums
中整数的个数。 - 空间复杂度:
O
(
t
a
r
g
e
t
)
O( target )
O(target) , target为 目标整数
target
。
有序完全背包相似题目:
注:仅供学习参考!
题目来源:力扣。