( 位运算 ) 461. 汉明距离 ——【Leetcode每日一题】

文章介绍了计算两个整数之间汉明距离的三种方法,包括通过数学除法和取余、统计异或后1的个数以及去除最低位的1,提供了Java和C++的代码实现,并分析了时间复杂度为O(logC),其中C为2^31。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

❓461. 汉明距离

难度:简单

两个整数之间的 汉明距离 指的是这两个数字对应二进制位不同的位置的数目。

给你两个整数 xy,计算并返回它们之间的汉明距离。

示例 1:

输入:x = 1, y = 4
输出:2
解释:
1 (0 0 0 1)
4 (0 1 0 0)
   ↑ ↑
上面的箭头指出了对应二进制位不同的位置。

示例 2:

输入:x = 3, y = 1
输出:1

提示:

  • 0 < = x , y < = 2 31 − 1 0 <= x, y <= 2^{31} - 1 0<=x,y<=2311

💡思路:

基础知识必知一篇文章搞懂位运算

法一:数学

  • 除法,取余。

法二:统计1的个数

  • 对两个数进行异或操作,位级表示不同的那一位为 1,统计有多少个 1 即可。

法三:去除最低的那一位 1

  • 使用 z & (z - 1) 去除 z 位级表示最低的那一位。

🍁代码:(Java、C++)

法一:数学
Java

class Solution {
    public int hammingDistance(int x, int y) {
        int ans = 0;
        while(x != 0 || y != 0){
            if(x % 2 != y % 2){
                ans++;
            }
            x /= 2;
            y /= 2;
        }
        return ans;
    }
}

C++

class Solution {
public:
    int hammingDistance(int x, int y) {
        int ans = 0;
        while(x != 0 || y != 0){
            if(x % 2 != y % 2){
                ans++;
            }
            x /= 2;
            y /= 2;
        }
        return ans;
    }
};

法二:统计1的个数
Java

class Solution {
    public int hammingDistance(int x, int y) {
        int ans = 0;
        int z = x ^ y;
        while(z != 0){
            if((z & 1) == 1) ans++;
            z = z >> 1;
        }
        return ans;
    }
}

C++

class Solution {
public:
    int hammingDistance(int x, int y) {
        int ans = 0;
        int z = x ^ y;
        while(z != 0){
            if((z & 1) == 1) ans++;
            z = z >> 1;
        }
        return ans;
    }
};

法三:去除最低的那一位 1
Java

class Solution {
    public int hammingDistance(int x, int y) {
        int ans = 0;
        int z = x ^ y;
        while(z != 0){
            z &= (z - 1);
            ans++;
        }
        return ans;
    }
}

C++

class Solution {
public:
    int hammingDistance(int x, int y) {
        int ans = 0;
        int z = x ^ y;
        while(z != 0){
            z &= (z - 1);
            ans++;
        }
        return ans;
    }
};
🚀 运行结果:

在这里插入图片描述

🕔 复杂度分析:
  • 时间复杂度 O ( l o g C ) O(logC) O(logC),其中 C 是元素的数据范围,在本题中 log ⁡ C = log ⁡ 2 31 = 31 \log C=\log 2^{31} = 31 logC=log231=31
  • 空间复杂度 O ( 1 ) O(1) O(1)

题目来源:力扣。

放弃一件事很容易,每天能坚持一件事一定很酷,一起每日一题吧!
关注我 leetCode专栏,每日更新!

注: 如有不足,欢迎指正!
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

零點零壹

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值