JUC——ForkJoin(分而治之)

本文介绍了Java的ForkJoin框架,其核心思想是分而治之,将大任务拆分成小任务,利用多线程处理后合并结果。通过实现从1加到10亿的例子,阐述了任务类的创建、工作密取思想及任务执行。对比测试显示,多核设备下ForkJoin比单线程快,但不如Stream流计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引入

ForkJoin框架是处理任务的一种决策——“大事化小,小事化了”是其主要思想。

分而治之

利用此框架的思想,将比较大的任务拆分成小任务,再借助多线程分别处理计算,最后在把结果合并起来,返回最终的结果。

上图:
ForkJoin

可见画功了得!!

  • 啊呸!!!


实现

通过实现一个小例子来理解这个过程。

  • 实现从 1 加到 10亿。

创建任务类:

import java.util.concurrent.RecursiveTask;

/**
 * “这看起来很像递归,有关类的递归”
 * “淦!就是!”
 * 继承 RecursiveTask类,,翻译过来就是 “递归任务”
 */
public class ForkJoin_Demo extends RecursiveTask<Long> {

    private Long start = 0L;
    private Long end = 0L;

    public ForkJoin_Demo(Long start,Long end){
        this.start = start;
        this.end = end;
    }

    //临界值
    Long temp = 10000L;

    @Override
    protected Long compute() {
        if((end - start) < temp){
            long sum = 0L;
            for (long i = start; i <= end ; i++) {
                sum += i;
            }
            return sum;
        }else { //超过临界值之后,便开始“分而治之”
            long middle = (end+start+1)/2;//中间值

            ForkJoin_Demo task1 = new ForkJoin_Demo(start,middle);
            task1.fork();//拆分任务,把任务压入线程队列
            ForkJoin_Demo task2 = new ForkJoin_Demo(middle+1,end);
            task2.fork();//拆分任务,把任务压入线程队列

            //合并
            return task1.join() + task2.join();
        }
    }
}

任务类必须继承 RecursiveTask 或 RecursiveAction,,

因为他俩是 ForkJoinTask 的子类。

二者区别:

RecursiveAction:用于没有返回结果的任务。
RecursiveTask: 用于有返回结果的任务。

这其中的多线程并行过程也采取了 工作密取 的思想:

分而治之 分割了每个任务之后,某个线程提前完成了任务,就会去其他线程偷取任务来完成,加快执行效率。同时,第一个分配的线程是从队列中的头部拿任务,当完成任务的线程去其他队列拿任务的时候是从尾部拿任务,所以这样就避免了竞争。

显然,任务队列为一个双端队列。


接下来是执行:

private static void test1() throws ExecutionException, InterruptedException {
        long start = System.currentTimeMillis();

        ForkJoinPool pool = new ForkJoinPool();
        ForkJoinTask<Long> task = new ForkJoin_Demo(0L,10_0000_0000L);
        ForkJoinTask<Long> submit = pool.submit(task);
        Long sum = submit.get();

        System.out.println(sum);

        long end = System.currentTimeMillis();
        System.out.println("时间:" + (end - start));
    }

ForkJoinTask 任务的执行 需要借助—— ForkJoinPool
ForkJoinPool
看他的实现类,是不是似曾相识。

没错,也是线程池那一套

其实 ForkJoinPool 就是一个 “CPU密集型的自定义线程池” !

因为要尽可能的并行,所以线程个数最好是 CPU 的核数—— 一个核可以支持一个线程。

所以,此策略不实用单核设备。

单核的话根本不存在并行,还会产生额外的池化和队列化的开销。

最后我们对比测试一下:

import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.stream.LongStream;

public class Test {
    public static void main(String[] args) throws ExecutionException, InterruptedException {

        //普通方法 (循环)
        test();
        //进阶方法 (ForkJoin递归任务)
        test1();
        //最快方法 (Stream流计算)
        test2();

    }

    //普通方法
    public static void test(){
        long start = System.currentTimeMillis();

        long sum = 0L;
        for (int i = 1; i <= 10_0000_0000; i++) {
            sum += i;
        }
        System.out.println(sum);

        long end = System.currentTimeMillis();
        System.out.println("时间:" + (end - start));
    }

    //进阶方法
    // 适合CPU密集型 线程池里的线程个数 为 计算机CPU核数
    // System.out.println("获取当前计算机CPU核数"+Runtime.getRuntime().availableProcessors());
    private static void test1() throws ExecutionException, InterruptedException {
        long start = System.currentTimeMillis();

        ForkJoinPool pool = new ForkJoinPool();
        ForkJoinTask<Long> task = new ForkJoin_Demo(0L,10_0000_0000L);
        ForkJoinTask<Long> submit = pool.submit(task);
        Long sum = submit.get();

        System.out.println(sum);

        long end = System.currentTimeMillis();
        System.out.println("时间:" + (end - start));
    }

    //最佳方法
    public static void test2(){
        //利用 Stream 流计算 来提高效率
        long start = System.currentTimeMillis();

        long sum = LongStream.rangeClosed(0, 10_0000_0000).parallel().reduce(0, Long::sum);
        System.out.println(sum);

        long end = System.currentTimeMillis();
        System.out.println("时间:" + (end - start));
    }
}

执行结果:

500000000500000000
时间:297
500000000500000000
时间:197
500000000500000000
时间:171

显然,在多核设备下,ForkJoin 方法 要比普通单线程方法要快,但相比于 Stream流计算来说,还是不行。

可见这个1.8新特性还是很厉害的。
我这里有一篇做参考:Java——Stream流计算(java.util.stream)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少歌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值