引入
ForkJoin框架是处理任务的一种决策——“大事化小,小事化了”是其主要思想。
分而治之
利用此框架的思想,将比较大的任务拆分成小任务,再借助多线程分别处理计算,最后在把结果合并起来,返回最终的结果。
上图:
可见画功了得!!
- 啊呸!!!
实现
通过实现一个小例子来理解这个过程。
- 实现从 1 加到 10亿。
创建任务类:
import java.util.concurrent.RecursiveTask;
/**
* “这看起来很像递归,有关类的递归”
* “淦!就是!”
* 继承 RecursiveTask类,,翻译过来就是 “递归任务”
*/
public class ForkJoin_Demo extends RecursiveTask<Long> {
private Long start = 0L;
private Long end = 0L;
public ForkJoin_Demo(Long start,Long end){
this.start = start;
this.end = end;
}
//临界值
Long temp = 10000L;
@Override
protected Long compute() {
if((end - start) < temp){
long sum = 0L;
for (long i = start; i <= end ; i++) {
sum += i;
}
return sum;
}else { //超过临界值之后,便开始“分而治之”
long middle = (end+start+1)/2;//中间值
ForkJoin_Demo task1 = new ForkJoin_Demo(start,middle);
task1.fork();//拆分任务,把任务压入线程队列
ForkJoin_Demo task2 = new ForkJoin_Demo(middle+1,end);
task2.fork();//拆分任务,把任务压入线程队列
//合并
return task1.join() + task2.join();
}
}
}
任务类必须继承 RecursiveTask 或 RecursiveAction,,
因为他俩是 ForkJoinTask 的子类。
二者区别:
RecursiveAction:用于没有返回结果的任务。
RecursiveTask: 用于有返回结果的任务。
这其中的多线程并行过程也采取了 工作密取 的思想:
分而治之 分割了每个任务之后,某个线程提前完成了任务,就会去其他线程偷取任务来完成,加快执行效率。同时,第一个分配的线程是从队列中的头部拿任务,当完成任务的线程去其他队列拿任务的时候是从尾部拿任务,所以这样就避免了竞争。
显然,任务队列为一个双端队列。
接下来是执行:
private static void test1() throws ExecutionException, InterruptedException {
long start = System.currentTimeMillis();
ForkJoinPool pool = new ForkJoinPool();
ForkJoinTask<Long> task = new ForkJoin_Demo(0L,10_0000_0000L);
ForkJoinTask<Long> submit = pool.submit(task);
Long sum = submit.get();
System.out.println(sum);
long end = System.currentTimeMillis();
System.out.println("时间:" + (end - start));
}
ForkJoinTask 任务的执行 需要借助—— ForkJoinPool
看他的实现类,是不是似曾相识。
没错,也是线程池那一套
其实 ForkJoinPool 就是一个 “CPU密集型的自定义线程池” !
因为要尽可能的并行,所以线程个数最好是 CPU 的核数—— 一个核可以支持一个线程。
所以,此策略不实用单核设备。
单核的话根本不存在并行,还会产生额外的池化和队列化的开销。
最后我们对比测试一下:
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.ForkJoinTask;
import java.util.stream.LongStream;
public class Test {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//普通方法 (循环)
test();
//进阶方法 (ForkJoin递归任务)
test1();
//最快方法 (Stream流计算)
test2();
}
//普通方法
public static void test(){
long start = System.currentTimeMillis();
long sum = 0L;
for (int i = 1; i <= 10_0000_0000; i++) {
sum += i;
}
System.out.println(sum);
long end = System.currentTimeMillis();
System.out.println("时间:" + (end - start));
}
//进阶方法
// 适合CPU密集型 线程池里的线程个数 为 计算机CPU核数
// System.out.println("获取当前计算机CPU核数"+Runtime.getRuntime().availableProcessors());
private static void test1() throws ExecutionException, InterruptedException {
long start = System.currentTimeMillis();
ForkJoinPool pool = new ForkJoinPool();
ForkJoinTask<Long> task = new ForkJoin_Demo(0L,10_0000_0000L);
ForkJoinTask<Long> submit = pool.submit(task);
Long sum = submit.get();
System.out.println(sum);
long end = System.currentTimeMillis();
System.out.println("时间:" + (end - start));
}
//最佳方法
public static void test2(){
//利用 Stream 流计算 来提高效率
long start = System.currentTimeMillis();
long sum = LongStream.rangeClosed(0, 10_0000_0000).parallel().reduce(0, Long::sum);
System.out.println(sum);
long end = System.currentTimeMillis();
System.out.println("时间:" + (end - start));
}
}
执行结果:
500000000500000000
时间:297
500000000500000000
时间:197
500000000500000000
时间:171
显然,在多核设备下,ForkJoin 方法 要比普通单线程方法要快,但相比于 Stream流计算来说,还是不行。
可见这个1.8新特性还是很厉害的。
我这里有一篇做参考:Java——Stream流计算(java.util.stream)