AI For Everyone 是吴恩达老师开设的AI入门课程,尽管课程开设于几年前,最近两年AI有了很大的发展,但是AI入门知识等没用很多变化,网址为:https://www.coursera.org/learn/ai-for-everyone,在DeepLearning.AI观看,但我反正是直接从B站看的录屏。
了解AI需要了解机器学习、数据、AI组织、机器学习能做什么和不能做什么、深度学习/神经网络。了解了AI就需要知道如何构架AI项目,如何在自己的组织中构建AI,还会了解到AI对社会的影响。
什么是AI
AI其实是两种不同的概念:ANI和AGI;ANI是弱人工智能,主要是用于某一方面;AGI是通用人工智能,相对发展较弱;课程主要介绍ANI。
在前几年推动AI发展的很大程度上是机器学习,而不是近期广泛使用的大预言模型。
机器学习是监督学习,监督学习是通过输入的知识,来判断并输出,即:构建从A到B的映射。
监督学习得到很大发展,一方面得益于近些年来网络上分享的数据越来越多,样本知识越来越多;另一方面得益于神经网络和深度学习的崛起。
数据(数据集)对于构建AI非常重要,如何获取数据?一种方法是手动标注图片构建样本数据集,另一种方式是观察用户行为和其他类型的行为,第三种方式是从网上等下载样本数据集。
数据很重要,但是有时候数据也被滥用或错误的使用方式。在团队中,需要尽早构建样本收集团队、计算机团队、AI团队之间的沟通联系,并且不要认为有大量的数据,AI就能让数据产生价值。
避免数据问题,错误的样本数据会产生错误的结果。数据可能会有问题、会有缺失值,数据是混乱无序的,图片、音频、文本等非结构化数据AI可能理解起来相对困难。
AI常用概念
机器学习:一个能够构建从A到B映射的数据集学习系统;
深度学习是通过多个输入A1、A2、A3等,通过一个人工的神经网络,得到输出结果B。吴老师对于深度学习的解读比上课时老师讲的简单明了太多了,非常推荐。上课时老师自己也不是搞AI出身,讲深度学习也是稀里糊涂。
在2025年,机器学习(ML)、深度学习(DL)、大型语言模型(LLMs)以及数据科学这些领域虽然各自有其独特的研究方向和技术特点,但它们之间也存在大量的交集。如果用韦恩图来表示这些领域的关系,可以设想如下划分:
-
机器学习 (Machine Learning, ML):这是最外层的一个大圈,代表了整个AI领域中的一类算法和统计模型,这些算法和模型允许计算机系统通过经验自动改进和适应。
-
深度学习 (Deep Learning, DL):这是位于ML内部的一个圆圈,因为它是ML的一个子集,专注于模仿人脑的神经网络结构来进行学习。深度学习特别擅长处理复杂的非线性问题,比如图像识别、语音识别等。
-
大型语言模型 (Large Language Models, LLMs):这同样位于ML的大圈内,并且与DL圈有很大的重叠,因为大多数现代LLMs都是基于深度学习技术构建的。LLMs专门用于理解和生成自然语言或代码,通常具有数十亿乃至更多参数,使其能够捕捉到语言中的细微差别。
-
数据科学 (Data Science):这是一个覆盖范围广泛的圆圈,它与ML、DL及LLMs都有交集。数据科学不仅仅关注于使用算法进行预测,还包括数据收集、清洗、分析和可视化等过程。因此,它的边界可能与ML圈有较大的重合部分,同时也会涉及到其他三个领域的应用。
在这个韦恩图中:
- ML 圈包含了所有基于数据进行学习的方法。
- DL 圈是ML的一部分,强调的是那些利用多层神经网络的复杂模型。
- LLMs 圈也是ML/DL的一部分,但更具体地指向那些设计用来处理语言任务的大规模模型。
- 数据科学 圈则涵盖了从数据提取知识的所有方面,包括但不限于ML方法的应用。
实际中这些领域之间的界限并不总是那么清晰,而且随着技术的发展,这些领域也在不断地相互渗透和融合。例如,数据科学家可能会使用深度学习技术来构建模型,而开发LLM的研究人员也需要深厚的数据科学技能来处理和理解他们的训练数据。
团队转型AI
AI公司应该具有战略数据收集、建立数据库、能够发现自动化处理的机会、明确的AI新分工。团队如果转型为善于使用AI,需要借助以下几点:启动试点项目来给自己一个正确的鼓励和方向,这样可以了解人工智能什么能做什么还做不到;建立一个人工智能团队并提供广泛的人工智能培训;广泛的AI训练;制定一个人工智能策略;保证内外沟通一致。
AI很大程度还是大量样本的学习,需要依靠大量的输入来理解,而不能和人类一样,通过一个书本上的知识来完全学习某一个方面。
深度学习
深度学习系统是由输入、神经元、输出,吴老师通过顾客购买衣服的案例来简明的说明了深度学习/神经网络的过程。
构建机器学习系统
主要是包括三部:收集数据,选择并训练模型,部署模型产生新的输出。
与机器学习系统不同,数据科学在面对问题的流程不同,往往是先收集数据,然后分析数据,最后根据分析结果提出建议等。
AI错误认识
AI在目前也仅能取代需要宠物执行的任务和工作岗位,让某一项工作自动化;即使没用获取大量的样本数据,也可以在AI研究取得一定的进展,但拥有大量数据确实更好。
AI技术可行性需要考虑AI系统是否达到预期效果,需要多少数据能够实现理想水平,开发AI系统的成本与时间。
不要在火车前面猛跑,不要试图偏离行业发展的大趋势与标准,我们生活在时间有限、数据有限、资源有限的世界中,需要考虑如何利用资源让自己的收益最大。
AI开发不一定需要很多人,即使只有一个团队,一个人,也可以通过训练一些AI模型来建立初始的项目。
如何让团队更好利用AI转型
通过试点项目获得甜头和积极反馈,即使没用实际的效益,但是能够吸引其他项目或获得未来的发展;建立专门的AI团队,提供广泛的AI培训或线上课程,指定AI发展战略(例如指定统一的数据库等,更好的利用团队内部的数据成果),要对内和对外积极进行团队AI的宣传。
对于个人来说,开始AI第一步可以:与朋友一起学习,或与有经验的朋友开始创建一个项目,雇佣其他人员或与领导讨论等。
深度学习的应用成果
计算机视觉,包括图像分类和图像识别,最常用的就是人脸识别。在GIS和RS领域,很多人使用深度学习进行地物分类等,并且这一过程越来越简单化,在前几年可能还需要专门的算法等,但是现在ArcGIS Pro等开始支持了深度学习模块,吴秋生老师等GIS和RS领域的大牛开发了类似于GeoAI等程序包。
自然语言处理方面,AI可以进行文本信息的分类,文本信息的检索,还有机器翻译、语言转文本、文本转语言等。
深度学习也应用在机器人领域,包括自动驾驶或者辅助驾驶,通过雷达扫描系统和运动规划等为汽车提供AI感知。’
AI很强大的方面是使用在非结构化数据,主要是图形、文本、音频等,但是也可能处理结构化数据,例如图表等内容。
非监督学习
尽管当前主要是监督学习,但是非监督学习也很有价值,最常见的就是聚类,聚类也是一种非监督算法,相比于监督学习是从A到B的映射,非监督学习只需要输入数据并让系统输出一个你认为感兴趣的结论等,不一定是有一个具体的输出B。
迁移学习
迁移学习是另一个重要的AI技术领域,可以通过任务A的训练数据集等迁移到任务B,完成另一个学习任务。
强化学习
看完强化学习的视频,我感觉强化学习就是训狗,AI做好了就给它奖励,做的不好就给他惩罚。但是其实AI也会偷懒或耍赖,有一个贪吃蛇训练项目,吃了果子有奖励,撞到身上会死亡。结果是AI贪吃蛇耍赖,围着果子转圈,以避免撞到蛇身上。
GANs(Generative Adversarial Network)
GANs是图像合成AI技术,可以通过算法合成图像。
Knowledge Graph
知识图谱也是一种AI技术,在我们使用搜索引擎时,右侧会自动推荐与搜索内容相关的知识等,这就是知识图谱的应用。
AI与社会
AI对于社会产生的影响不能过于乐观或悲观,我们不必要过分担心超级AI,而是需要关注一些真正有意义的问题。AI有很多局限性,毕竟很多问题都是黑盒模型,人类自身还没搞懂为什么,更别说学习人类部分知识的AI了。
此外,AI被人类训练,不可避免的导致了AI具有一定的偏见,例如种族歧视或者性别歧视,目前正在努力实现AI对不同群体的公平对待。
AI是很容易被愚弄的,它被训练数据等影响。消除偏见等,需要更少的使用含有偏见的训练数据等,具有多元背景的AI团队等。
但是AI也会被不良使用,例如AI换脸等进行视频篡改,破坏民主和隐私,制造虚假的评论等。
AI很可能在未来取代一些低端的工作,但是发展中国家尽管相对落后,但是它们得益于没用根深蒂固的体系,或许在很多领域可以不破不立,他们创新的打破成本更低,能够在某项领域走的更快。
目前的AI社区等仍不成熟,市场和价值还没一彻底显示,对于发展中经济体的建议是专注于AI加强本国的垂直行业和强势行业产业,而不是想要依靠AI与其他国家,在其他国家的强势领域竞争。
AI在消灭工作岗位,也在创造工作岗位,对于普通人来说,我们需要一个基本的收入来维持一个安全的环境,有一个网络资源来终身学习。