
CNN
weixin_43436587
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Faster RCNN RPN网络
1 Faster RCNN2RPN 网络注意的点(1)两次reshape的作用将(n,18,37,50)改为(n,2,37*9,50),然后做softmax(intput,1),dim=1,第一维是batch,对第二维进行softmax,如图,这样两两一组,能把每一个特征点都分成前景与背景。在这之后,再把维度改回去。...原创 2020-09-22 21:08:19 · 374 阅读 · 0 评论 -
faster RCNN _Proposal_Layer 学习记录
参考https://blog.csdn.net/weixin_41693877/article/details/107159304大概过程(1)生成所有anchor(2)根据回归得到的 偏移量预测数据,对生成的anchor进行修正,并且将超出原图边界之外部分的边框修正到边界,即proposal(3)利用网络预测的得分,对proposal进行排序,取靠前的部分。再对proposal进行NMS,取前2000个作为结果。1 生成所有anchorhttps://blog.csdn.net/weixin_原创 2020-08-19 09:42:34 · 218 阅读 · 0 评论 -
faster RCNN RPN 数据生成部分学习记录
参考的代码注释理解https://blog.csdn.net/weixin_41693877/article/details/1070592871.产生anchorVGG16一共有5个pool层,我们选用第4个pool层的输出作为提取出来的特征图,这样相比于原图就缩小了16倍,即下采样倍数是16,输出特征图为原图的1/16。输入以(3×600×800),因此输出特征图(,512,37,50),相当于每一个特征点对应一个16x16的图像区域。并且以16x16大小的区域作为基础单位,以ratios=[0.原创 2020-08-18 21:32:52 · 229 阅读 · 0 评论