GRU实战双向

本文详细探讨了GRU(门控循环单元)在深度学习中的使用,特别是如何实现双向信息流。通过PyTorch框架,我们展示了如何构建和训练一个双向GRU模型,以提高序列数据的建模能力,特别是在理解和捕捉上下文信息方面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import torch
import torch.nn as nn
import torch.optim as optim
import csv
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
import numpy as np
import matplotlib.pyplot as plt
import time
from torch.nn.utils.rnn import pack_padded_sequence # https://pytorch.org/docs/master/generated/torch.nn.utils.rnn.pack_padded_sequence.html
import math

# 1:数据集

# 超参数
HIDDEN_SIZE = 100 # 隐藏层
BATCH_SIZE = 256
N_LAYER = 2 # RNN的层数
N_EPOCHS = 100 # train的轮数
N_CHARS = 128 # 这个就是要构造的字典的长度
USE_GPU = False

class NameDataset(Dataset):  # 这个是自己写的数据集的类,就那3个函数
    def __init__(self, is_train_set=True):
        filename = "E:\\PyTorch\\PyTorch深度学习实践\\names_train.csv" if is_train_set else "E:\\PyTorch\\PyTorch深度学习实践\\names_test.csv"
        with open(filename, "rt") as f:  # 因为这个文件不是很大,所以在初始化的时候就全读进来了
            reader = csv.reader(f)
            rows = list(reader)
        self.names = [row[0] for row in rows]
        self.len 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值