自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 Python基础(二)——条件循环结构

Python基础(二)——条件循环结构 1 条件语句 1.1 if语句 if 2 > 1 and not 2 > 3: print('Correct Judgement!') # 输出为Correct Judgement! 只有当if后的条件为真时,才会执行。 1.2 if-else语句 temp = input("猜一猜小姐姐想的是哪个数字?") guess = int(temp) # input 函数将接收的任何数据类型都默认为 str。 if guess == 666:

2020-07-23 22:35:07 182

原创 Python基础(一)——变量、运算符 、数据类型及位运算

Python基础(一)——变量、运算符 、数据类型及位运算 1.注释 在python中,‘#’表示单行注释;’’’ ‘’’ 或 “”" “”" 表示区间注释,如下: 单行注释 # Hello world 区间注释 ''' Hello world ''' 2.运算符 2.1 算数操作符 操作符 名称 + 加 – 减 * 乘 / 除 // 整除 % 取余 ** 幂 print(1 + 1) # 2 print(2 - 1) # 1 print(3 * 4) #

2020-07-22 23:45:44 207

原创 【学习记录五】CV基础入门之街道字符识别——模型集成

【学习记录五】CV基础入门之街道字符识别——模型集成 5.1 集成学习方法 5.2 深度学习中的集成学习 5.3 预测结果处理 5.1 集成学习方法 在机器学习中的集成学习可以在一定程度上提高预测精度。 常见的集成学习方法有Stacking、Bagging和Boosting,其中,Stacking集成方法是进行模型的堆叠,从而提高预测精度;Bagging集成是袋装法集成,即有放回的抽样,典型的方法是RF(随机森林);Boosting集成是提升集成法,典型的方法有GBDT(梯度提升树)和Xgboost。同时这

2020-06-02 22:59:47 173

原创 【学习记录四】CV基础入门之街道字符识别——模型训练与验证

【学习记录四】CV基础入门之街道字符识别——模型训练与验证 4.1 样本集的选择 4.2 验证集划分方法 4.3 模型训练与验证 4.4 模型的保存与加载 4.1 样本集的选择 训练集(Train Set):模型用于训练和调整模型参数 验证集(Validation Set):用来验证模型精度和调整模型超参数 测试集(Test Set):验证模型的泛化能力 4.2 验证集划分方法 4.2.1 留出法 直接将训练集划分成两部分,新的训练集和验证集。 优点:直接简单 缺点:只得到了一份验证集,有可能导致模型在验证

2020-05-30 18:54:58 192

原创 【学习记录三】CV基础入门之街道字符识别——字符识别模型

【学习记录三】CV基础入门之街道字符识别——字符识别模型 3.1 卷积神经网络CNN 3.2 Pytorch构建CNN模型 3.3 代码的构建与训练 3.1 卷积神经网络 卷积神经网络(CNN)是一类特殊的人工神经网络,是深度学习中重要的一个分支。CNN在很多领域都表现优异,精度和速度比传统计算学习算法高很多。特别是在计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。 CNN是一种层次模型,输入的是原始的像素数据。CNN通过卷积层(convolution)、池化层(pooling

2020-05-26 23:11:56 234

原创 【学习记录二】CV基础入门之街道字符识别——数据读取与扩增

【学习记录二】CV基础入门之街道字符识别——数据读取与扩增 2.1 学习目标 2.2 图像读取 2.3 数据扩增 2.4 Pytorch读取数据 2.1 学习目标 学习Python和Pytorch中图像读取 学会扩增方法和Pytorch读取赛题数据 2.2 图像读取 Pillow Pillow是Python图像处理函式库的一个分支。提供了常见的图像读取和处理的操作。且可以与ipython notebook无缝集成,是应用比较广泛的库。 # 导入Pillow库 from PIL import Image,Im

2020-05-23 22:40:15 187

原创 【学习记录一】CV基础入门之街道字符识别——赛题理解

【学习记录一】CV基础入门之街道字符识别——赛题理解 主要内容 1.1 赛题数据 1.2 数据标签 1.3 评测指标 1.4 读取数据 1.5 解题思路 主要内容 赛题目标:通过这道赛题可以引导大家走入计算机视觉的世界,主要针对竞赛选手上手视觉赛题,提高对数据建模能力。 赛题任务:赛题以计算机视觉中字符识别为背景,要求选手预测街道字符编码。 1.1 赛题数据 赛题以街道字符为为赛题数据,所有的参赛选手只能使用比赛给定的数据集完成训练,不能使用SVHN原始数据集进行训练。 其中,训练集数据包括3W张照片,验证

2020-05-20 22:02:36 379

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除