特征值与特征向量,原理与Matlab实现

求解原理

  定义:AAAn×nn \times nn×n 方阵,如果有数λ\lambdaλnnn维非零列向量XXX,满足下式,则称λ\lambdaλAAA的一个特征值,非零向量XXX为与λ\lambdaλ对应的特征向量
AX=λXAX = \lambda XAX=λX
  Step1:特征值求解
  上式可写作(λE−A)X=0\left( {\lambda E - A} \right)X = {\bf{0}}(λEA)X=0,其中 EEEnnn 阶单位矩阵,从而得到下式,这是一个关于λ\lambdaλnnn次多项式,也称为特征方程特征多项式,从而解得nnn个特征值λ1,λ2,...,λn{\lambda _1},{\lambda _2},...,{\lambda _n}λ1,λ2,...,λn
∣λE−A∣=∣λ−a11−a12⋯−a1n−a21λ−a22⋯−a2n⋮⋮⋱⋮−an1−an2⋯λ−ann∣=0 \left| {\lambda E - A} \right| = \left| \begin{matrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{matrix} \right| = 0 λEA= λa11a21an1a12λa22an2a1na2nλann =0
  Step2:特征向量求解
  对于每一个特征值 λi\lambda_iλi,通过求解方程组 (λiE−A)Xi=0\left( {\lambda_i E - A} \right)X_i = {\bf{0}}(λiEA)Xi=0,得到特征向量XiX_iXi。这可以转化为齐次线性方程组求解问题,具体步骤如下:

  1. λiE−A\lambda_i E - AλiEA 表示为增广矩阵形式。
  2. 对增广矩阵进行高斯消元,得到方程组的简化形式。
  3. 根据简化形式,利用回代法求解出特征向量 XiX_iXi
      

基本性质

  性质1: 矩阵AAA

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值