求解原理
定义: 设AAA是 n×nn \times nn×n 方阵,如果有数λ\lambdaλ和nnn维非零列向量XXX,满足下式,则称λ\lambdaλ为AAA的一个特征值,非零向量XXX为与λ\lambdaλ对应的特征向量。
AX=λXAX = \lambda XAX=λX
Step1:特征值求解
上式可写作(λE−A)X=0\left( {\lambda E - A} \right)X = {\bf{0}}(λE−A)X=0,其中 EEE 是 nnn 阶单位矩阵,从而得到下式,这是一个关于λ\lambdaλ的nnn次多项式,也称为特征方程或特征多项式,从而解得nnn个特征值λ1,λ2,...,λn{\lambda _1},{\lambda _2},...,{\lambda _n}λ1,λ2,...,λn。
∣λE−A∣=∣λ−a11−a12⋯−a1n−a21λ−a22⋯−a2n⋮⋮⋱⋮−an1−an2⋯λ−ann∣=0 \left| {\lambda E - A} \right| = \left| \begin{matrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{matrix} \right| = 0 ∣λE−A∣=
λ−a11−a21⋮−an1−a12λ−a22⋮−an2⋯⋯⋱⋯−a1n−a2n⋮λ−ann
=0
Step2:特征向量求解
对于每一个特征值 λi\lambda_iλi,通过求解方程组 (λiE−A)Xi=0\left( {\lambda_i E - A} \right)X_i = {\bf{0}}(λiE−A)Xi=0,得到特征向量XiX_iXi。这可以转化为齐次线性方程组求解问题,具体步骤如下:
- 将 λiE−A\lambda_i E - AλiE−A 表示为增广矩阵形式。
- 对增广矩阵进行高斯消元,得到方程组的简化形式。
- 根据简化形式,利用回代法求解出特征向量 XiX_iXi。
基本性质
性质1: 矩阵AAA的