
机器学习
weixin_43473360
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习面试题
本文来自七月实验室,无意间发现的一个公众号,感觉挺有用的,就摘录一下。 (tips:一个在线的公式编辑工具:http://latex.codecogs.com/eqneditor/editor.php) 1,哪些机器学习算法不需要做归一化处理? 解析:在实际应用中,通过梯度下降法求解的模型一般都是需要归一化的,比如线性回归,logistic回归,KNN,SVM,神经网络等模型。 但是树形模型不需...原创 2019-03-27 00:10:34 · 1339 阅读 · 0 评论 -
机器学习入门第三天
特征重要性 作为决策树模型训练过程的副产品,根据每个特征划分子表前后的信息熵减少量就标志了该特征的重要程度,此即为该特征的特征重要性指标。通过模型训练得到的model对象提供了属性:feature_importances_来存储每个特征的特征重要性指标值。 获取特征重要性相关API: model.fit(train_x, train_y) fi = model.feature_importance...原创 2019-04-17 22:06:54 · 357 阅读 · 0 评论 -
机器学习入门第四天
分类报告 sklearn.metrics提供了分类报告相关API,不仅可以得到混淆矩阵,还可以得到交叉验证的查准率、召回率、f1得分的结果。这样可以方便的分析出哪些样本是异常样本。 import sklearn.metrics as sm # 获取分类报告 cr = sm.classification_report(实际输出, 预测输出) print(cr) 决策树分类 决策树分类模型会找到与样...原创 2019-04-18 20:53:32 · 445 阅读 · 0 评论