如何用自己的数据集进行bert预训练

# coding:utf-8

import os
import pickle
import random
import logging
import warnings
from argparse import ArgumentParser

import numpy as np
import pandas as pd
from tqdm import tqdm
from typing import List, Tuple
from collections import defaultdict

import torch
from torch.utils.data import Dataset

from transformers import (
    BertTokenizer,
    TrainingArguments,
    Trainer
)
from src.util.modeling.modeling_nezha.modeling import NeZhaConfig, NeZhaForMaskedLM

warnings.filterwarnings('ignore')

logging.basicConfig()
logger = logging.getLogger('')
logger.setLevel(logging.INFO)


def save_pickle(dic, save_path):
    with open(save_path, 'wb') as f:
        pickle.dump(dic, f)


def load_pickle(load_path):
    with open(load_path, 'rb') as f:
        message_dict = pickle.load(f)
    return message_dict


def seed_everything(seed):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False


def read_data(args, tokenizer: BertTokenizer) -> dict:
    pretrain_df = pd.read_csv(args.pretrain_data_path, header=None, sep='\t')

    inputs = defaultdict(list)
    for i, row in tqdm(pretrain_df.iterrows(), desc='', total=len(pretrain_df)):
        sentence = row[0].strip()
        inputs_dict = tokenizer.encode_plus(sentence, add_special_tokens=True,
                                            return_token_type_ids=True, return_attention_mask=True)
        inputs['input_ids'].append(inputs_dict['input_ids'])
        inputs['token_type_ids'].append(inputs_dict['token_type_ids'])
        inputs['attention_mask'].append(inputs_dict['attention_mask'])

    os.makedirs(os.path.dirname(args.data_cache), exist_ok=True)
    save_pickle(inputs, args.data_cache)

    return inputs


class PretrainDataset(Dataset):
    def __init__(self, data_dict: dict):
        super(Dataset, self).__init__()
        self.data_dict = data_dict

    def __getitem__(self, index: int) -> tuple:
        data = (self.data_dict['input_ids'][index]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值