原生python实现KNN分类算法

KNN算法又称为K最近邻分类算法,是一种监督学习类方法。所谓的k最近邻,就是指最接近的k个邻居(数据),核心思想是:在一个含未知样本的空间,可以根据离这个样本最邻近的k个样本的数据类型来确定样本的数据类型。

首先得到鸢尾花的样本数据,每个样本有四个特征值(萼片长度,萼片宽度,花瓣长度,花瓣宽度)。先打开文件再读取能避免路径或文件名出现中文名的错误,将鸢尾花的数据分开为测试集与训练集,对鸢尾花的特征值进行标准化处理。调用KNN算法进行近邻分析,查看测试准确率。



import numpy as np

import pandas as pd

def getExcel():

    m =
open(r'C:\Users\50352\Desktop\iris.csv')

    iris=pd.read_csv(m)

    return iris

def irisDataClassification(iris):

    indexs=np.random.permutation(len(iris))

    indexs=indexs[0:10]

    testSet=iris.take(indexs)

    trainingSet=iris.drop(indexs)

    sets=[testSet,trainingSet]

    return sets

def
knn(trainingSet,testSet,trainingResults):

    totalsSize = trainingSet.shape[0]

    tests = np.tile(testSet, (totalsSize, 1)) -
trainingSet

    sqDiffMat = tests**2

    sqDistances = sqDiffMat.sum(axis=1)

    sortedDistIndices = sqDistances .argsort()

    voteIlabel =
trainingResults[sortedDistIndices[1]]

    return voteIlabel

iris=getExcel()

sets=irisDataClassification(iris)

trainingSet=sets[1].drop(columns=['species']).values

trainingResults=sets[1]['species'].values

testSets=sets[0].values

sta=0

for i in testSets:

    testSet=[i[0],i[1],i[2],i[3]]

    ret=knn(trainingSet,testSet,trainingResults)

    if ret==i[4]:

        sta+=1

successRate=sta/len(sets[0])

print('准确率为:\n',successRate)


【基于QT的调色板】是一个使用Qt框架开发的色彩选择工具,类似于Windows操作系统中常见的颜色选取器。Qt是一个跨平台的应用程序开发框架,广泛应用于桌面、移动和嵌入式设备,支持C++和QML语言。这个调色板功能提供了横竖两种渐变模式,用户可以方便地选取所需的颜色值。 在Qt中,调色板(QPalette)是一个关键的类,用于管理应用程序的视觉样式。QPalette包含了一系列的颜色角色,如背景色、前景色、文本色、高亮色等,这些颜色可以根据用户的系统设置或应用程序的需求进行定制。通过自定义QPalette,开发者可以创建具有独特视觉风格的应用程序。 该调色板功能可能使用了QColorDialog,这是一个标准的Qt对话框,允许用户选择颜色。QColorDialog提供了一种简单的方式来获取用户的颜色选择,通常包括一个调色板界面,用户可以通过滑动或点击来选择RGB、HSV或其他色彩模型中的颜色。 横渐变取色可能通过QGradient实现,QGradient允许开发者创建线性或径向的色彩渐变。线性渐变(QLinearGradient)沿直线从一个点到另一个点过渡颜色,而径向渐变(QRadialGradient)则以圆心为中心向外扩散颜色。在调色板中,用户可能可以通过滑动条或鼠标拖动来改变渐变的位置,从而选取不同位置的颜色。 竖渐变取色则可能是通过调整QGradient的方向来实现的,将原本水平的渐变方向改为垂直。这种设计可以提供另一种方式来探索颜色空间,使得选取颜色更为直观和便捷。 在【colorpanelhsb】这个文件名中,我们可以推测这是与HSB(色相、饱和度、亮度)色彩模型相关的代码或资源。HSB模型是另一种常见且直观的颜色表示方式,与RGB或CMYK模型不同,它以人的感知为基础,更容易理解。在这个调色板中,用户可能可以通过调整H、S、B三个参数来选取所需的颜色。 基于QT的调色板是一个利用Qt框架和其提供的色彩管理工具,如QPalette、QColorDialog、QGradient等,构建的交互式颜色选择组件。它不仅提供了横竖渐变的色彩选取方式,还可能支持HSB色彩模型,使得用户在开发图形用户界面时能更加灵活和精准地控制色彩。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值