LeetCode 33.搜索旋转排序数组/二分搜索

本文详细解析了LeetCode33题——搜索旋转排序数组的解决方案,通过二分搜索算法在O(logn)的时间复杂度下查找目标值。文章深入探讨了旋转排序数组的特点,以及如何通过比较中点和起始点来确定搜索范围。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

此题来自于:LeetCode 33.搜索旋转排序数组/二分搜索

  • 因为题目要求O(logn),且虽然旋转了(也有可能没旋转),但是还是部分有序的,采取二分搜索,但是关键在于目前的搜索区间[left,right)内,可能并不是有序的(因为旋转过了)。

所以只能分类:

  • mid > nums[left]时说明目前mid在旋转过后的左段,当且仅当target < m && target >= nums[left]时,往左边搜,其余往右边搜。

  • mid < nums[left]时说明目前mid在旋转过后的右段,当且仅当target > m && target <= nums[right - 1],往右搜,其余情况往左搜。

  • 为什么要比较mid和nums[left]?

  • 因为能给target锁定范围,一比较,就知道left到mid是不是有序的了(或者说是否被旋转过)。

AC代码:

class Solution {
public:
    vector<int> nums;
    int target;
    int search(vector<int>& nums, int target) {
        this->nums = nums;
        this->target = target;
        int n = nums.size();
        if(n == 0) return -1;
        
        return binary_search(0,n);
    }

    int binary_search(int left,int right){ //二分法的搜索区间才是关键
        while(left < right){
            int mid = left + (right - left) / 2;
            int m = nums[mid];
            if(m == target) return mid;
            else if(m > nums[left]){  //在左段
                if(target < m && target >= nums[left]) right = mid;
                else left = mid + 1;
            } 
            else{ //在右段
                if(target > m && target <= nums[right - 1]) left = mid + 1;
                else right = mid;
            }
        }
        return -1;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值