DL:overfitting

本文探讨了各种激活函数的特点,如Sigmoid、ReLU、Leaky ReLU等,并阐述了过拟合的检测与解决策略,如train-test差距增大、交叉验证的应用。重点讲解了如何通过dropout防止过拟合,以及如何通过API调用优化模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 各个激活函数的优缺点
  • 过拟合:
  • 检测过拟合:train效果好,test效果差,gap变大
    train_loss下降,val_loss上升,val_loss最低的点就是最好的参数,test_data用来测试模型的好坏
  • 解决过拟合:
    交叉验证:k-fold cross-validation (效果不大)
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
Dropout code:
在这里插入图片描述
在这里插入图片描述

如何找到最优解

在这里插入图片描述
在这里插入图片描述
API:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值