CVPR2021: ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic 阅读笔记
Paper: ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic
Code: https://github.com/Xiangtaokong/ClassSR
Abstract
我们的目标是加速在大型图像(2K-8K)上的超级分辨率(SR)过程。
在实际使用中,大图像通常被分解成小的子图像。基于这种处理方式,我们发现不同的图像区域有不同的修复难度,可以由具有不同能力的网络来处理。直观地说,光滑的区域比复杂的纹理更容易进行重建。为了利用这一特性,我们可以采用适当的SR网络来处理分解后的不同子图像。在此基础上,我们提出了一个新的解决方法–ClassSR,它在一个统一的框架中结合了分类和超分辨率。特别的是,它首先使用一个Class-Module将子图像按照修复难度分为不同的类别,然后应用一个SR-Module对不同的类别进行SR。Class-Module是一个传统的分类网络,而SR-Module是一个network container网络容器,由to-be-accelerated SR network和其简化版本组成。我们还引入了一种新的分类方法,用两种损失–类损失Class-Loss和平均损失Average-Loss–来产生分类结果。经过联合训练,大部分子图像将通过较小的网络,因此计算成本可以大大降低。实验表明,我们的ClassSR可以帮助大多数现有的方法(如FSRCNN、CARN、SRResNet、RCAN)在DIV8K数据集上节省高达50%的FLOPs。这个通用的框架也可以应用于其他低级别的视觉任务。
Introduction
在本文中,我们研究了如何在 "大 "输入图像上加速SR算法,这些图像将被上采样到至少2K的分辨率(2048×1080)。而在现实世界的使用中,智能手机和电视显示器的图像/视频分辨率已经达到了4K(4096×2160),甚至8K(7680×4320)。由于最近的SR算法是建立在CNN的基础上,内存和计算成本将随着输入尺寸的增加而呈quadratically增长。因此,有必要将输入分解成子图像,并不断加速SR算法,以满足在真实图像上实时实施