题目描述
约翰家有N头奶牛,第i头奶牛的编号是SiS_iSi,每头奶牛的编号都是唯一的。这些奶牛最近 在闹脾气,为表达不满的情绪,她们在挤奶的时候一定要排成混乱的队伍。在一只混乱的队 伍中,相邻奶牛的编号之差均超过KKK。比如当K=1K = 1K=1时,1,3,5,2,6,41, 3, 5, 2, 6, 41,3,5,2,6,4就是一支混乱的队伍, 而1,3,6,5,2,41, 3, 6, 5, 2, 41,3,6,5,2,4不是,因为666和555只差111。请数一数,有多少种队形是混乱的呢?
输入输出格式
输入格式:
第一行两个整数N,KN,KN,K。
第二行到N+1N + 1N+1行,为奶牛的编号SiS_iSi
输出格式:
一行一个整数,混乱队形的种类数,对999997399999739999973取模。答案保证不超过long longlong ~longlong long 范围。
输入样例
4 1
3
4
2
1
输出样例
2
————————————————————————————————————
一道经典的状压DP
思路
我们设dp[i][j]dp[i][j]dp[i][j] 为已经选了iii 头牛 , 状态为jjj的方案数。
我们可以先预处理出只有一头牛的情况,就是这个二进制数里只有一个111的情况。
for (int i = 1; i <= n; i++) dp[i][1 << (i - 1)] = 1;
然后我们开始枚举。
首先枚举所有状态。再枚举两只可能的牛。如果只有一头牛都在这个状态里,则这个状态是合法的。
然后我们更新状态
dp[j][i | (1 << (j - 1))] += dp[k][i];
因为有一头牛再状态里没有出现,所以我们将它更新。
code
#include<bits/stdc++.h>
using namespace std;
const int p = 9999973;
int n, m;
long long ans;
int num[17];
long long dp[17][1 << 17];
int main()
{
cin >> n >> m;
for (int i = 1; i <= n; i++) cin >> num[i];
for (int i = 1; i <= n; i++) dp[i][1 << (i - 1)] = 1;
for (int i = 1; i <= (1 << n) - 1; i++)
{
for(int j = 1 ; j <= n ; j ++)
for (int k = 1; k <= n; k++)
{
if (j != k && (!(i & (1 << (j - 1)))) && (i & (1 << (k - 1))))
if (abs(num[j] - num[k]) > m)
dp[j][i | (1 << (j - 1))] += dp[k][i];
}
}
for (int i = 1; i <= n; i++)
ans =(ans +dp[i][(1 << n) - 1]);
cout << ans;
// system("pause");
}
End