1.欧几里德算法即为辗转相除法
它的具体做法是:用较大数除以较小数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。
2.用C++代码实现如下:
int GCD(int a, int b)
{
if(b == 0)
return a;
else
return GCD(b, a%b);
}
3.欧几里德算法扩展
这个算法就是用来给出如下方程的整数解
a*x+b*y=1
void EXGCD(int a, int b, int &x, int &y)
{
if(b == 0)
{
x = 1;
y = 1;
return;
}
int px, py;
EXGCD(b, a%b, px, py); //有没有觉得这里的前面两个跟GCD算法很像
x = py;
y = px - (a / b) * py;
}
现在解释一下这个算法:
首先,如果b=0的话,这里的a肯定是等于1的。因为在最开始的条件中要求a跟b互质,而参数a跟b的迭代事实上就是欧几里得算法的迭代(辗转相除法,对比一下上面GCD的代码),最终得到的结果肯定是1。于是此处为了让等式成立,x肯定等于1,而y就可以随便取值了
那么接着就是一般情况了。首先我们假设如下不等式已经解决:
bx'+(a%b)y'=1
这个其实就是个递归过程,我们之后就是利用递归解决的结果来还原我们要的结果。
于是等式事实上等价于:
由于a%b=a-(a/b)*b,故有: <=这一步请仔细思考为什么,然后再往下看
bx'+(a%b)y'=1
=> bx'+(a-(a/b)*b)y'=1
=> bx'+ay'-(a/b)*by'=1
=> ay'+b[-(a/b)y'+x']=1
那么我们只需要令:
x=y'
y=-(a/b)y'+x'
就可以还原成我们需要的等式了(事实上就是根据递归的结果构造出我们需要的一个可行解)