欧几里德算法

1.欧几里德算法即为辗转相除法
它的具体做法是:用较大数除以较小数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。
2.用C++代码实现如下:

int GCD(int a, int b)
{
    if(b == 0)
    	return a;
    else
    	return GCD(b, a%b);
}

3.欧几里德算法扩展
这个算法就是用来给出如下方程的整数解

a*x+b*y=1
void EXGCD(int a, int b, int &x, int &y)
{
    if(b == 0)
    {
        x = 1;
        y = 1;
        return;
    }
    int px, py;
    EXGCD(b, a%b, px, py);	//有没有觉得这里的前面两个跟GCD算法很像
    x = py;
    y = px - (a / b) * py;
}

现在解释一下这个算法:

首先,如果b=0的话,这里的a肯定是等于1的。因为在最开始的条件中要求a跟b互质,而参数a跟b的迭代事实上就是欧几里得算法的迭代(辗转相除法,对比一下上面GCD的代码),最终得到的结果肯定是1。于是此处为了让等式成立,x肯定等于1,而y就可以随便取值了

那么接着就是一般情况了。首先我们假设如下不等式已经解决:

bx'+(a%b)y'=1

这个其实就是个递归过程,我们之后就是利用递归解决的结果来还原我们要的结果。

于是等式事实上等价于:

由于a%b=a-(a/b)*b,故有: <=这一步请仔细思考为什么,然后再往下看
   bx'+(a%b)y'=1
=> bx'+(a-(a/b)*b)y'=1
=> bx'+ay'-(a/b)*by'=1
=> ay'+b[-(a/b)y'+x']=1

那么我们只需要令:

x=y'
y=-(a/b)y'+x'

就可以还原成我们需要的等式了(事实上就是根据递归的结果构造出我们需要的一个可行解)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值