PyTorch源码解读之torch.utils.data.DataLoader使用方法

本文详细介绍了PyTorch中torch.utils.data.DataLoader的作用和使用方法,包括其参数设置、数据加载机制及示例。DataLoader作为数据加载的重要接口,负责将数据集按batch封装为Tensor,并提供了多进程加载、洗牌和批处理等功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简介

官网:https://pytorch.org/docs/stable/data.html?highlight=torch%20utils%20data%20dataloader#torch.utils.data.DataLoader
dataloader.py脚本的的github地址:https://github.com/pytorch/pytorch/blob/master/torch/utils/data/dataloader.py

PyTorch中数据读取的一个重要接口是torch.utils.data.DataLoader,该接口定义在dataloader.py脚本中,只要是用PyTorch来训练模型基本都会用到该接口,该接口主要用来将自定义的数据读取接口的输出或者PyTorch已有的数据读取接口的输入按照batch size封装成Tensor,后续只需要再包装成Variable即可作为模型的输入,因此该接口有点承上启下的作用,比较重要。

torch.utils.data.DataLoader是数据加载器,结合了数据集dataset和取样器sampler,并且提供一个在dataset上的可迭代对象。DataLoader支持map样式和iterable样式的数据集,支持单进程或多进程加载、自定义加载顺序以及可选的自动批处理(排序)和内存固定。
在训练模型时使用到此函数,用来把训练数据分成多个小组,此函数每次抛出一组数据。直至把所有的数据都抛出。就是做一个数据的初始化。

CLASS torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值