论文阅读:Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

本文介绍了一种针对目标检测的缩放感知自动增强方法,该方法通过搜索空间、搜索算法和评价指标,优化图像级和框级增强策略。实验表明,这种方法优于传统的多尺度训练,解决了数据增强中的尺度变化问题,提升了检测器的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

paper: https://arxiv.org/abs/2103.17220
code: https://github.com/dvlab-research/SA-AutoAug GitHub - dvlab-research/SA-AutoAug


目录

1 Motivation

1.1 图像级增强 Image-level augmentations

1.2 盒级增强 Box-level augmentations

2 Methods

2.1 搜索空间

2.2 评价指标

2.3 搜索算法

2.4 整体框架

3 实验


数据增强包括两个发展方向,一类是数据增强方法,另外一类是数据增强的组合策略。本文延续了AutoAugment的思路,提出一种适合目标检测的数据增强策略搜索方法。

自动增强方法[9,51,22,27,26]通常将寻找最佳增强策略的过程描述为一个搜索问题。数据增强的组合策略问题一般包括三个部分:(1)搜索空间;(2)搜索算法;(3)评价指标。搜索空间可能因任务而异,例如:对AutoAugment,数据增强策略包含五个子策略(sub-policy),每个子策略包括两个操作(operations),每个操作对应一种数据增强方法的强度和执行概率;对于搜索算法,通常使用强化学习[52]和进化算法[38]在迭代中探索搜索空间;评价指标是模型在代理任务(训练集子集)上训练测试,用作搜索算法的反馈。

设计的缩放感知搜索空间包含图像级和框级增强。图像级增强功能包括对整个图像的放大和缩小功能。对于框级增强,在图像中搜索对象的颜色和几何操作。


1 Motivation

在这里插入图片描述

1.1 图像级增强 Image-level augmentations

为了处理尺度变化,对象检测器通常使用图像金字塔进行训练。但是,这些比例设置高度依赖手工选择。在我们的搜索空间中,我们通过可搜索的放大和缩小功能来减轻这种负担。如图2左侧所示,放大和缩小功能由概率P和幅度M指定。具体而言,概率Pin和Pout在0到0.5的范围内搜索。在这个范围内,可以用概率来保证原始尺度的存在。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值