paper: https://arxiv.org/abs/2103.17220
code: https://github.com/dvlab-research/SA-AutoAug GitHub - dvlab-research/SA-AutoAug
目录
1.1 图像级增强 Image-level augmentations
1.2 盒级增强 Box-level augmentations
数据增强包括两个发展方向,一类是数据增强方法,另外一类是数据增强的组合策略。本文延续了AutoAugment的思路,提出一种适合目标检测的数据增强策略搜索方法。
自动增强方法[9,51,22,27,26]通常将寻找最佳增强策略的过程描述为一个搜索问题。数据增强的组合策略问题一般包括三个部分:(1)搜索空间;(2)搜索算法;(3)评价指标。搜索空间可能因任务而异,例如:对AutoAugment,数据增强策略包含五个子策略(sub-policy),每个子策略包括两个操作(operations),每个操作对应一种数据增强方法的强度和执行概率;对于搜索算法,通常使用强化学习[52]和进化算法[38]在迭代中探索搜索空间;评价指标是模型在代理任务(训练集子集)上训练测试,用作搜索算法的反馈。
设计的缩放感知搜索空间包含图像级和框级增强。图像级增强功能包括对整个图像的放大和缩小功能。对于框级增强,在图像中搜索对象的颜色和几何操作。
1 Motivation
1.1 图像级增强 Image-level augmentations
为了处理尺度变化,对象检测器通常使用图像金字塔进行训练。但是,这些比例设置高度依赖手工选择。在我们的搜索空间中,我们通过可搜索的放大和缩小功能来减轻这种负担。如图2左侧所示,放大和缩小功能由概率P和幅度M指定。具体而言,概率Pin和Pout在0到0.5的范围内搜索。在这个范围内,可以用概率来保证原始尺度的存在。