
深度学习
深度学习--学习历程&教程
AloneCat2012
某大厂程序猿
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
stable diffusion采样详解
采样sampler原创 2024-03-05 18:37:12 · 2672 阅读 · 0 评论 -
SD欧拉采样
【代码】SD欧拉采样。原创 2023-10-08 22:07:08 · 277 阅读 · 1 评论 -
深度学习最简单的线性网络实现
net = nn.Sequential(nn.Linear(2, 1)) # 第一个指定输入特征形状,即2,第二个指定输出特征形状,输出特征形状为单个标量,因此为1。# 参考 https://zh.d2l.ai/chapter_linear-networks/linear-regression-concise.html。print('w的估计误差:', true_w - w.reshape(true_w.shape))"""构造一个PyTorch数据迭代器"""原创 2023-08-31 12:39:37 · 140 阅读 · 0 评论 -
linux跑mindyolo test.py所需要的环境安装
先安装mindspore环境。原创 2023-05-15 15:55:23 · 210 阅读 · 0 评论 -
如何在MacOS上安装MindSpore环境
如何在MacOS上安装MindSpore环境原创 2023-04-21 10:31:15 · 428 阅读 · 0 评论 -
MindCV迁移学习
mindcv原创 2023-05-06 17:03:18 · 224 阅读 · 0 评论 -
torch.nn的各种方法讲解
【代码】Pytorch方法解析。原创 2023-09-26 10:55:20 · 124 阅读 · 0 评论 -
最简单的使用dropout的网络(提高泛化性)
【代码】最简单的使用dropout的网络(提高泛化性)原创 2023-11-14 11:55:53 · 195 阅读 · 0 评论 -
SelfAttention教程
先随机算出来一个注意力权重和value,这里面的逻辑就是先论文的高手整出来的,不用理解。所以以下是可以被训练的参数(linear层就是简单的y = x * W^T + b)note PyTorch 中,nn.Linear 层的权重和偏置默认是可训练的。然后计算出output,然后和target对比 迭代更新,更新参数。本质就是计算一个token和其他所有token的关系。self.W_q 中的权重和偏置。self.W_k 中的权重和偏置。self.W_v 中的权重和偏置。原创 2024-01-09 21:30:16 · 529 阅读 · 0 评论 -
深度学习模型权重转换(pytorch转mindspore)
在bevformer.py文件__init__之后打断点,通过self.img_backbone.state_dict()得到入参数--self.img_backbone.state_dict().keys(),可以得到全部的参数。核心:先载入一个pytorch的模型,用mindspore的key和pytorch的value。直接运行一下,重点是net.get_parameters()这个方法可以直接拿到参数。4 根据得到到mapping.json文件生成mindspore需要的ckpt文件;原创 2023-09-18 15:14:20 · 885 阅读 · 0 评论