实矩阵也可能有复特征值,因此无法避免在矩阵运算中碰到复数,本讲学习处理复数矩阵和复向量。
最重要的复矩阵是傅里叶矩阵,它用于傅里叶变换。而对于大数据处理快速傅里叶变换(FFT)显得更为重要,它将傅立叶变换的矩阵乘法中运算的次数从 n 2 n^2 n2次降至 n l o g 2 n nlog2^n nlog2n 次。
复向量 Complex vectors
对于给定的复向量 z = [ z 1 z 2 . . . z n ] ∈ C n z =\begin{bmatrix} z_1\\z_2\\...\\z_n \end{bmatrix}∈C^n z= z1z2...zn ∈Cn ,其元素中有复数,因此 z T z z^Tz zTz 无法给出向量的长度。
例如 [ 1 i ] \begin{bmatrix} 1 & i \end{bmatrix} [1i] [ 1 i ] \begin{bmatrix} 1 \\ i \end{bmatrix} [1i] =0,则定义 ∣ z ∣ 2 = z ‾ T z = ∣ z 1 ∣ 2 \begin{vmatrix} z \end{vmatrix}^2 =\overline{z}^Tz =\begin{vmatrix} z_1 \end{vmatrix}^2 z 2=zTz= z1 2 + ∣ z 2 ∣ 2 \begin{vmatrix} z_2 \end{vmatrix}^2