目录
本讲介绍相似矩阵,这些内容以及奇异值分解是线性代数最核心的概念。
正定矩阵 A T A A^TA ATA
若矩阵 A 满足对任意向量 x≠0 均有 x T A x > 0 x^TAx>0 xTAx>0,则称矩阵为正定矩阵,可以通过特征值、主元和行列式的办法来判断矩阵的正定性。
正定矩阵来自于最小二乘问题。有大量的实际问题用到了长方形矩阵,而最小二乘问题中用到了长方形矩阵的积 A T A A^TA ATA,它是正定矩阵。
正定矩阵 A 是对称矩阵,它的逆矩阵 A − 1 A^{ -1} A−1也是正定矩阵,逆矩阵的特征值是原矩阵的倒数,因此也都是正数。若矩阵 A 和 B 都是正定矩阵,则 A+B 也是正定矩阵: x T A x > 0 x^TAx>0 xTAx>0, x T B x > 0 x^TBx>0 xTBx>0,则有 x T ( A + B ) x > 0 x^T(A+B)x>0 xT(A+B)x>0。
如果 A 是一个 m x n 长方形矩阵,则 A T A A^TA ATA 是对称方阵。通过讨论 x T ( A T A ) x x^T(A^TA)x xT(ATA)x 的正负可以确认它是正定矩阵: x T ( A T A ) x = ( A x ) T ( A x ) = ∣ A x ∣ 2 ≥ 0 x^T(A^TA)x=(Ax)^T(Ax)= \begin{vmatrix} Ax \end{vmatrix}^2≥0 xT(ATA)x=(Ax)T(Ax)= Ax 2≥0。当且仅当 Ax=0 时,表达式为 0。当矩阵 A 的各列线性无关时,即矩阵为列满秩 r=n,A 的零空间只有零向量,即此条件下仅有零向量,满足 x T ( A T A ) x x^T(A^TA)x xT(ATA)x=0。因此矩阵列满秩时, A T A A^TA ATA 是正定矩阵。正定矩阵将之前的知识点串联起来。
相似矩阵 Similar matrices
A 和 B 均是 n x n 方阵,若存在可逆矩阵 M,使得 B= M − 1 A M M^{-1}AM M−1AM,则 A 和 B 为相似矩阵。
特征值互不相同 Distinct eigenvalues
若矩阵 A 具有 n 个线性无关的特征向量,可以对角化得到 S − 1 A S = Λ S^{-1}AS =Λ S−1AS=Λ,则 A 相似于 Λ,这里的 M 是特征向量矩阵 S。如果将 M 取其它可逆矩阵,可以得到和 A相似的另一矩阵 B,实际上这样可以定义一类矩阵,Λ 是其中最简洁的一个。
例: A = [ 2 1 1 2 ] , 则 Λ = [ 3 0 0 1 ] 例:A=\begin{bmatrix} 2&1\\1&2 \end{bmatrix},则 Λ=\begin{bmatrix} 3&0\\0&1 \end{bmatrix} 例:A=[2112],则Λ=[3001],而取另一 M,则有
B = [ 1 − 4 0 1 ] [ 2 1 1 2 ] [ 1 4 0 1 ] = [ − 2 − 15 1 6 ] B=\begin{bmatrix} 1&-4\\0&1 \end{bmatrix}\begin{bmatrix} 2&1\\1&2 \end{bmatrix}\begin{bmatrix} 1&4\\0&1 \end{bmatrix}=\begin{bmatrix} -2&-15\\1&6 \end{bmatrix} B