MIT_线性代数笔记:第 31 讲 基变换和图像压缩

本文介绍了如何通过基变换,特别是傅里叶基和小波基,实现图像的高效压缩。JPEG利用傅里叶变换对图像进行有损压缩,而小波变换则因其正交性和逼近特性适用于压缩。文章还讨论了不同基向量的选择及其在压缩中的作用,如标准基、傅里叶基向量和小波基的选择原则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本讲介绍基变换。选择合适的基向量会给计算制造便利。基变换的一个重要应用就是压缩,图像、影像、音频和其它一些数据都会因为基变换而得到更高效的压缩储存。本讲的主题仍旧是线性变换和矩阵的关联。

图像压缩 Compression of images

本讲涉及的压缩过程是有损压缩。例如一幅像素是 512x512 的静态黑白图像,图像用一个向量来表示,向量的分量 x i x_i xi 表示像素的灰度,变化范围 0 ≤ x i ≤ 255 0≤x_i≤255 0xi255,占8bits。该向量属于 R n R^n Rn空间, n = ( 512 ) 2 n=(512)^2 n=(512)2。彩色图像描述每个点的像素需要三个数据,向量长度是黑白图像的 3 倍。

图像的标准压缩方式为 JPEG(联合图像专家组 Joint Photographic Experts Group)。图像压缩的本质就是基变换。

压缩前图像采用的基向量是标准基。但是在图像中离得很近的区域,颜色是非常接近的,比如教学视频中黑板的一个区域,这些区域像素的灰度值很接近,但是用标准基来存储并没有利用上这一特点,这就给了我们压缩的空间。

标准基就是 [ 1 0 0 . . . 0 ] , [ 0 1 0 . . . 0 ] , . . . [ 0 0 0 . . . 1 ] \begin{bmatrix} 1\\0\\0\\...\\0 \end{bmatrix},\begin{bmatrix} 0\\1\\0\\...\\0 \end{bmatrix},...\begin{bmatrix} 0\\0\\0\\...\\1\end{bmatrix} 100...0 , 010...0 ,... 000...1 ,,而显然对于灰度很接近的情况, [ 1 1 1 . . . 1 ] \begin{bmatrix} 1\\1\\1\\...\\1 \end{bmatrix}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值