
论文导读
文章平均质量分 94
1 + 1=王
CSDN博客专家;
CSDN优质创作者;
阿里云社区专家博主;
华为云云享专家;
51CTO专家博主;
热爱JAVA的计算机科学与技术(人工智能)研究生在读;
全国大学生计算机设计大赛国家二等奖;
三维数字化创新设计大赛四川省特等奖、国家三等奖;
蓝桥杯全国软件与信息技术专业人才大赛三等奖;
MathorCup数学建模挑战赛三等奖.
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【论文导读】 - 关于联邦图神经网络的3篇文章
图神经网络( GNNs )凭借其强大的处理实际应用中广泛存在的图数据的能力,受到了广泛的研究关注。然而,随着社会越来越关注数据隐私,GNNs面临着适应这种新常态的需要。这导致了近年来联邦图神经网络( FedGNNs )研究的快速发展。虽然前景广阔,但这一跨学科领域感兴趣的研究者来说是极具挑战性的。对这一领域缺乏深入的调查只会加剧这一问题。在本文中,我们通过提供对这一新兴领域的全面调查来弥补这一差距。原创 2024-05-17 16:38:14 · 1304 阅读 · 0 评论 -
【论文导读】- dyngraph2vec: Capturing network dynamics using dynamic graph representation learning
学习图表示是一项基本任务,旨在捕获向量空间中图的各种属性。最新的方法学习静态网络的这种表示。然而,现实世界的网络随着时间的推移而发展,并具有不同的动态。捕捉这种演变是预测看不见的网络属性的关键。为了了解网络动力学如何影响预测性能,我们提出了一种嵌入方法,该方法可以学习动态图中的演变结构,并且可以更高精度地预测看不见的链接。我们的模型dyngraph2vec使用由密集层和循环层组成的深层架构来学习网络中的时间转换。我们激发了捕捉动态的需求,以便在使用随机块模型创建的数据集上进行预测。原创 2023-06-26 20:58:49 · 983 阅读 · 13 评论 -
【论文导读】- A Topological Information Protected Federated Learning Approach for Traffic Speed Forecasting
联合学习已被应用于智能交通系统中的各种任务,以通过分散的训练方案保护数据隐私。智能交通系统(ITS)中最先进的模型的主要优点是基于图神经网络(GNN)的空间信息学习。当将前馈学习应用于基于GNN模型的ITS任务时,现有的框架只能保护数据隐私;然而,忽略了传输网络的拓扑信息。在本文中,我们提出了一种新的分布式学习框架来解决这个问题。具体地,我们引入了一种基于差分隐私的邻接矩阵保护方法来保护拓扑信息。我们还提出了一种邻接矩阵聚合方法,允许基于局部GNN的模型接入全局网络,以获得更好的训练效果。原创 2023-06-16 20:48:07 · 3463 阅读 · 68 评论 -
【论文导读】- Variational Graph Recurrent Neural Networks(VGRNN)
对图结构化数据的表示学习主要在静态图设置中进行研究,而对动态图进行建模的努力仍然很少。在本文中,我们开发了一种新颖的分层变分模型,该模型引入了额外的随机变量来联合建模图递归神经网络(GRNN)的隐藏状态,以捕获拓扑和节点属性变化的非动态图。我们认为,在这个变分GRNN(VGRNN)中使用高级潜在随机变量可以更好地捕获动态图中观察到的潜在变异性以及节点潜在表示的不确定性。通过为这种新的VGRNN架构(SI-VGRNN)开发的半隐式变分推理,我们表明灵活的非高斯潜在表示可以进一步帮助动态图分析任务。原创 2023-06-13 20:51:08 · 4932 阅读 · 59 评论 -
【论文导读】- STFL: A Spatial-Temporal Federated Learning Framework for Graph Neural Networks
我们提出了一个面向图神经网络的时空联邦学习框架STFL。该框架挖掘输入时空数据的底层相关性,并将其转化为节点特征和邻接矩阵。框架中的联邦学习设置在保证数据隐私的同时实现了良好的模型泛化性。在睡眠阶段数据集ISRUC S3上的实验结果说明了STFL在图预测任务上的有效性。原创 2023-06-10 15:25:36 · 4447 阅读 · 37 评论 -
【论文导读】-Cross-Node Federated Graph Neural Network for Spatio-Temporal Data Modeling(跨节点联邦图神经网络时空数据建模)
传感器、可穿戴设备和物联网设备网络生成的大量数据强调了对利用分散数据的时空结构的高级建模技术的需求,因为需要边缘计算和许可问题。虽然联邦学习已经成为模型训练的框架,不需要直接的数据共享和交换,但有效地对复杂的时空依赖关系进行建模以提高预测能力仍然是一个悬而未决的问题。另一方面,最先进的时空预测模型假设不受限制地访问数据,忽略了数据共享的限制。原创 2023-05-31 22:09:57 · 3857 阅读 · 44 评论 -
【论文导读】- A vertical federated learning framework for graph convolutional network(一种用于图卷积网络的纵向联邦学习框架)
最近,图神经网络( Graph Neural Network,GNN )在图数据上的各种实际问题中取得了显著的成功。然而在大多数行业中,数据以孤岛的形式存在,数据的隐私安全也是一个重要问题。在本文中,我们提出了一种联邦GCN学习框架FedVGCN,用于数据垂直分区设置下的隐私保护节点分类任务,该范式可以推广到现有的GCN模型中。具体地,我们将计算图数据拆分为两部分。对于训练过程的每一次迭代,双方在同态加密下相互传递中间结果。原创 2023-05-04 21:05:00 · 4808 阅读 · 42 评论 -
【论文导读】- EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs(EvolveGCN:用于动态图的演化图卷积网络)
由于深度学习在欧几里得数据上的广泛应用,图表示学习重新成为一个热门的研究课题,它激发了非欧几里得领域神经网络,特别是图的各种创造性设计。随着这些图神经网络( Graph Neural Networks,GNN )在静态环境下的成功,我们进一步逼近了图动态演化的实际场景。现有方法通常借助节点嵌入,并使用循环神经网络( RNN ,广义上讲)来调节嵌入和学习时间动态。这些方法需要节点在全时间跨度(包括训练和测试两部分)内的知识,对于节点集频繁变化的情况适用性较差。原创 2023-02-23 09:09:07 · 6172 阅读 · 124 评论 -
【论文导读】- Subgraph Federated Learning with Missing Neighbor Generation(FedSage、FedSage+)
图由于其对现实世界对象及其相互作用的独特表示,在数据挖掘和机器学习中得到了广泛的应用。随着图形越来越大,常见的看到他们的子图分别收集和存储在多个本地系统。因此,考虑子图联邦学习设置是很自然的,其中每个局部系统持有一个小的子图,这个小的子图可能会偏离整个图的分布。因此,子图联合学习旨在协作地训练一个强大的、可泛化的图挖掘模型,而无需直接共享它们的图数据。原创 2023-01-30 09:11:39 · 6903 阅读 · 158 评论 -
【论文导读】- SpreadGNN: Serverless Multi-task Federated Learning for Graph Neural Networks(去服务器的多任务图联邦学习)
图神经网络( GNN )是图机器学习问题的首选方法,因为它们能够从图结构数据中学习最先进的表示。然而,由于用户方面的隐私问题、法规限制和商业竞争,将大量的真实世界图形数据集中用于GNN训练是令人望而却步的。联邦学习是在许多分布式边缘设备上协同训练机器学习模型的事实上的标准,而无需集中化。尽管如此,在联邦环境中训练图神经网络是模糊定义的,并带来统计和系统挑战。本文首次在文献中提出了可以在存在部分标签和没有中心服务器的情况下运行的新型多任务联邦训练框架SpreadGNN。原创 2023-01-12 14:16:28 · 8484 阅读 · 146 评论 -
【论文导读】- Cluster-driven Graph Federated Learning over Multiple Domains(聚类驱动的图联邦学习)
文章目录论文信息摘要主要贡献聚类驱动的图联邦学习问题定义联邦聚类聚类模型聚类模型的联系FedCG框架论文信息Cluster-driven Graph Federated Learning over Multiple Domains原文链接:Cluster-driven Graph Federated Learning over Multiple Domains:https://openaccess.thecvf.com/content/CVPR2021W/LLID/papers/Caldarola原创 2022-12-21 09:30:48 · 8862 阅读 · 96 评论 -
【论文导读】- E-LSTM-D: A Deep Learning Framework for Dynamic Network Link Prediction(动态网络链接预测)
预测网络中节点之间的潜在关系,即链路预测,长期以来一直是网络科学中的一个挑战。然而,大多数研究只关注静态网络的链路预测,而现实世界中的网络总是随着节点和链路的出现和消失而不断演化。动态网络链路预测因其能更好地捕捉网络的演化特性而受到越来越多的关注,但大多数算法仍无法达到令人满意的预测精度。鉴于长短时记忆网络LSTM 在处理时间序列方面的优异性能,本文提出了一种新的编码器- LSTM -解码器( E-LSTM-D)深度学习模型来预测端到端的动态链接。原创 2022-12-14 09:21:06 · 9537 阅读 · 108 评论 -
【论文导读】- Communication-Efficient Learning of Deep Networks from Decentralized Data(高通信效率的去中心化的深度网络学习)
Communication-Efficient Learning of Deep Networksfrom Decentralized Data【联邦平均算法】现代移动设备可以获取大量适合学习模型的数据,而这些数据反过来又可以极大地改善设备上的用户体验。原创 2022-12-06 09:20:36 · 8561 阅读 · 110 评论 -
【论文导读】- Link Weight Prediction Using Supervised Learning Methods(使用监督学习方法的链路权重预测及其在Yelp网络中的应用)
真实世界的网络具有交互的权重,其中链接权重往往代表一些物理属性。在许多情况下,为了恢复丢失的数据或预测网络的演变,我们需要预测网络中的链接权重。本文首先针对线图中的链接提出了一系列新的中心性指标。然后,利用这些线图指标,以及一些原始的图指标,我们设计了三种监督学习方法来实现单层和多层网络中的链接权重预测,其性能远远优于最近提出的几种基线方法。我们发现资源分配指标( RA )比其他拓扑属性在权重预测中发挥着更重要的作用,而线图指标在链路权重预测中至少与原始图指标同等重要。原创 2022-11-03 09:15:35 · 7606 阅读 · 136 评论 -
【论文导读】-GCLSTM graph convolution embedded LSTM for dynamic network link prediction用于动态网络边预测的图卷积嵌入LSTM
动态网络链接预测由于其在生物学、社会学、经济学和工业界的广泛应用,正成为网络科学的研究热点。然而,这是一个挑战,因为网络结构随着时间的推移而演变,使得添加/删除链接的长期预测特别困难。受深度学习框架,特别是卷积神经网络( CNN )和长短时记忆( LSTM )网络的巨大成功的启发,我们提出了一种新的端到端模型,将图卷积网络( GCN )嵌入LSTM,命名为GC - LSTM,用于动态网络链接预测。其中,LSTM被用作学习动态网络所有快照的时间特征的主要框架。而对于每个快照,原创 2022-10-27 08:18:21 · 11078 阅读 · 182 评论 -
【论文导读】- FederatedScope-GNN(FederatedScope-GNN:迈向统一、全面、高效的联邦图学习包)
联邦学习( FL )的惊人发展使计算机视觉和自然语言处理领域的各种任务受益,TFF和FATE等现有框架使其在实际应用中易于部署。然而,尽管图数据是普遍的,联邦图学习(FGL )由于其独特的特点和要求,没有得到很好的支持。FGL相关框架的缺乏增加了在实际应用中实现可重复研究和部署的努力。原创 2022-10-19 09:07:32 · 11590 阅读 · 163 评论 -
【论文导读】- GraphFL: A Federated Learning Framework for Semi-Supervised Node Classification on Graphs
基于图的半监督节点分类(GraphSSC)具有广泛的应用,从网络和安全到数据挖掘和机器学习等。然而,现有的集中式GraphSSB方法无法解决许多现实世界中基于图的问题,因为收集整个图并标记合理数量的标签既耗时又昂贵,数据隐私也可能受到侵犯。**联邦学习(FL)**是一种新兴的学习模式,可实现多个客户之间的协作学习,可以缓解标签稀缺的问题,并保护数据隐私。因此,在FL设置下执行GraphSSC是解决现实世界基于图形的问题的一个很有前景的解决方案。原创 2022-10-11 08:18:07 · 10298 阅读 · 148 评论 -
【论文导读】-Vertically Federated Graph Neural Network for Privacy-Preserving Node Classification纵向联邦图神经网络
图神经网络( GNN )在图数据的各种实际任务中取得了显著的进展。高性能的GNN模型总是依赖于图中丰富的特征和完整的边信息。然而,在实践中,这些信息可能被不同的数据持有者所隔离,这就是所谓的数据隔离问题。为了解决这个问题,本文提出了垂直联合图神经网络( VFGNN ),这是一种在数据垂直分区的情况下用于隐私保护节点分类任务的联合GNN学习范式,可以推广到现有的GNN模型中。具体来说,我们将计算图形拆分为两部分。我们将私有数据(即特征、边缘和标签)相关的计算留给数据持有者,并将剩余的计算委托给半诚实的服务器。原创 2022-10-05 08:10:23 · 9928 阅读 · 102 评论 -
【论文导读】 - A Comprehensive Survey on Trustworthy Graph NeuralNetworks(关于可信图神经网络的全面综述) [隐私保护部分]
由于GNN在建模图结构数据方面的强大能力,GNN被广泛用于各种应用,包括高风险场景,如财务分析、流量预测和药物发现。尽管在现实世界中,GNN在造福人类方面具有巨大潜力,但最近的研究表明,GNN可以泄露私人信息,容易受到敌对攻击,可以从训练数据中继承和放大社会偏见,并且缺乏可解释性,这有可能对用户和社会造成意外伤害。例如,现有的工作表明,攻击者可以欺骗GNNs以在训练图上进行不明显的扰动来给出他们想要的结果。在社交网络上接受培训的GNN可能会在他们的决策过程中嵌入歧视,从而加强了令人不快的社会偏见。原创 2022-09-28 07:57:03 · 12679 阅读 · 105 评论 -
【图神经网络】 - GNN的几个模型及论文解析(NN4G、GAT、GCN)
本文提出了一种利用构造性神经网络( NN4G )学习结构化领域( SD )的新方法。新模型允许将有监督神经网络的输入域扩展到包括无环/循环、有向/无向标记图的一般图类。特别地,该模型可以实现自适应的上下文转换,从图中学习分类和回归任务的映射。与以往针对具有递归动态结构的神经网络不同,NN4G基于具有状态变量的构造性前馈架构,使用无反馈连接的神经元。通过一个通用的遍历过程将神经元应用到输入图中,该过程放松了先前基于因果关系假设分层输入数据得到的方法的约束。原创 2022-09-23 08:02:14 · 17299 阅读 · 166 评论 -
【论文导读】- Federated Graph Neural Networks: Overview, Techniques and Challenges(联邦图神经网络:概述、技术和挑战)
图神经网络( GNNs )凭借其强大的处理实际应用中广泛存在的图数据的能力,受到了广泛的研究关注。然而,随着社会越来越关注数据隐私,GNNs面临着适应这种新常态的需要。这导致了近年来联邦图神经网络( FedGNNs )研究的快速发展。虽然前景广阔,但这一跨学科领域感兴趣的研究者来说是极具挑战性的。对这一领域缺乏深入的调查只会加剧这一问题。在本文中,我们通过提供对这一新兴领域的全面调查来弥补这一差距。原创 2022-09-13 08:45:12 · 12202 阅读 · 134 评论 -
【论文导读】Time-Series Representation Learning via Temporal and Contextual Contrasting(时间和上下文对比的时间序列表示学习)
Time-Series Representation Learning via Temporal and Contextual Contrasting(通过时间和上下文对比的时间序列)论文信息论文信息论文地址: https://arxiv.org/pdf/2106.14112.pdf源码地址:https://github.com/emadeldeen24/TS-TCC...原创 2022-05-14 19:24:58 · 5327 阅读 · 11 评论