
AI算法面试
文章平均质量分 84
以理论为基础,备战机器学习、深度学习算法工程师
1 + 1=王
CSDN博客专家;
CSDN优质创作者;
阿里云社区专家博主;
华为云云享专家;
51CTO专家博主;
热爱JAVA的计算机科学与技术(人工智能)研究生在读;
全国大学生计算机设计大赛国家二等奖;
三维数字化创新设计大赛四川省特等奖、国家三等奖;
蓝桥杯全国软件与信息技术专业人才大赛三等奖;
MathorCup数学建模挑战赛三等奖.
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
图像分割(Segmentation)
Cit yscapes 是驾驶领域进行效果和性能测试的图像分割数据集,它包含了5000张精细标注的图像和20000张粗略标注的图像,这些图像包含50个城市的不同场景、不同背景、不同街景,以及30类涵盖地面、建筑、交通标志、自然、天空、人和车辆等的物体标注。在解码器处,执行上采样和卷积。像,采用反卷积层对最后一个卷积层的f eat ure map进行上采样, 使它恢复到输入图像相同的尺寸,从而可以对每个像素都产生了一个预测, 同时保留了原始输入图像中的空间信息, 最后在上采样的特征图上进行逐像素分类。原创 2023-04-21 08:58:08 · 3423 阅读 · 57 评论 -
目标检测【Object Detection】
对于目标检测任务来说,COCO数据集中的80类是完全足够的。Mask R-CNN是对Faster R-CNN的直观扩展,网络的主干有RPN转换为主干网络为ResNet的特征金字塔网络(FPN),同时添加了一个分支用于预测每个感兴趣区域(RoI)上的分割掩模,与现有的用于分类和边界盒回归的分支并行。在多个特征图上设置不同缩放比例和不同宽高比的先验框以融合多尺度特征图进行检测,靠前的大尺度特征图可以捕捉到小物体的信息,而靠后的小尺度特征图能捕捉到大物体的信息,从而提高检测的准确性和定位的准确性。原创 2023-04-13 20:07:54 · 8431 阅读 · 58 评论 -
卷积神经网络(CNN)基础知识
在普通的卷积操作中,一个卷积核对应输出特征图的一个通道,而每个卷积核又会作用在输入特征图的所有通道上(即卷积核的通道数等于输入特征图的通道数);先对原始特征矩阵进⾏填充使其维度扩⼤到适配卷积⽬标输出维度,然后进⾏普通的卷积操作的⼀个过程,其输⼊到输出的维度变换关系恰好与普通卷积的变换关系相反,但这个变换并不是真正的逆变换操作,通常称为转置卷积⽽不是反卷积。特别的,扩张率为1的空洞卷积实际上就是普通卷积。卷积层的参数量,主要取决于每个卷积核的参数量以及卷积核的个数,设输入输出的通道数分别为c。原创 2023-03-09 20:13:13 · 978 阅读 · 1 评论 -
经典的卷积神经网络(VGG,GoogLeNet等)
Lenet是一个 7 层的神经网络(不包含输入层),包含 3 个卷积层,2 个池化层,2 个全连接层。原创 2023-03-02 20:34:31 · 611 阅读 · 1 评论 -
机器学习的特征归一化Normalization
为了消除数据特征之间的量纲影响,就需要对特征进行归一化处理,使得不同指标之间具有可比性。对特征归一化可以将所有特征都统一到一个大致相同的数值区间内。原创 2023-02-28 20:11:38 · 527 阅读 · 1 评论 -
机器学习经典算法——决策树(Decision Tree)
决策树是⼀种分⽽治之的决策过程。⼀个困难的预测问题,通过树的分⽀节点,被划分成两个或多个较为简单的⼦集,从结构上划分为不同的⼦问题。将依规则分割数据集的过程不断递归下去。随着树的深度不断增加,分⽀节点的⼦集越来越⼩,所需要提的问题数也逐渐简化。当分⽀节点的深度或者问题的简单程度满⾜⼀定的停⽌规则时, 该分⽀节点会停⽌分裂。决策树是一种自上而下,对样本数据进行树形分类的过程,由结点和有向边组成。结点分为内部节点和叶结点,其中内部结点表示一个特征或属性,叶结点表示类别。从顶部根节点开始,所有样本聚在一起。原创 2023-02-27 20:19:46 · 2539 阅读 · 3 评论 -
神经网络中的激活函数
由于函数f(x) = max(0, x)导致负梯度在经过该ReLU单元时被置0 ,而且在之后也不被任何数据激活,及流经该神经元的梯度永远为0,不对数据产生响应。在实际训练中,如果学习率设置较大,会导致超过一定比例的神经元不可逆死亡,进而参数无法更新,整个训练过程失败。当x原创 2023-02-28 10:26:35 · 523 阅读 · 0 评论 -
神经网络为什么使用深层表示,以及深层神经网络难以训练的原因
神经⽹络类型众多,其中最为重要的是多层感知机。多层感知机中的特征神经元模型称为感知机,简单的感知机如下图所⽰:其中x1, x2, x3 为感知机的输⼊,其输出为:多层感知机由感知机推⼴⽽来,最主要的特点是有多个神经元层,因此也叫深度神经⽹络。原创 2023-03-06 20:50:18 · 675 阅读 · 1 评论 -
如何解决过拟合与欠拟合,及理解k折交叉验证
在训练集以及测试集上同时具有较⾼的误差,此时模型的偏差较⼤;:在训练集上具有较低的误差,在测试集上具有较⾼的误差,此时模型的⽅差较⼤。原创 2023-02-22 19:24:46 · 969 阅读 · 2 评论 -
常见的分类算法及分类算法的评估方法
AdaBoosting算法是Boosting算法中最常用的一种,其思想是:先从初始训练集训练一个基学习器,在根据基学习器的表现对训练样本进行调整,使得错误的训练样本在后续受到更多关注,然后调整样本分布训练下一个基学习器;决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。正确率是被分对的样本数在所有样本数中的占⽐,通常来说,正确率越⾼,分类器越好。原创 2023-02-22 19:08:24 · 2285 阅读 · 0 评论 -
机器学习的学习方式
依据不同的学习⽅式和输⼊数据,机器学习主要分为以下四种学习方式。原创 2023-02-21 20:12:23 · 546 阅读 · 0 评论 -
向量与矩阵 导数和偏导数 特征值与特征向量 概率分布 期望方差 相关系数
代表了在⾃变量变化趋于⽆穷⼩的时候,函数值的变化与⾃变量的变化的⽐值。数学期望是试验中每次可能结果的概率乘以其结果的总和。即矩阵A的信息可以由其特征值和特征向量表⽰。:矩阵的每⼀列上的元素绝对值先求和,再从中取个最⼤的,(列和最⼤)。:矩阵的每⼀⾏上的元素绝对值先求和,再从中取个最⼤的,(⾏和最⼤)。: 矩阵的各个元素平⽅之和再开平⽅根,它通常也叫做矩阵的L2范数。:向量的每个元素的平⽅和再开平⽅根。:向量的所有元素的绝对值中最小的。:向量的所有元素的绝对值中最大的。:向量的各个元素的绝对值之和。原创 2023-02-15 09:35:18 · 4173 阅读 · 99 评论