队列的顺序存储实现

本文介绍了如何使用数组来模拟顺序存储的环形队列,详细解析了队列的满和空状态判断,并提供了相关代码示例,参考自《java 数据结构和算法》。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天用数组的方式来实现一下队列的顺序存储
1 队列介绍

  1. 队列是一个 有序列表,可以用 数组或是 链表来实现。
  2. 遵循 先入先出的原则。即: 先存入队列的数据,要先取出。后存入的要后取出
  3. 示意图:(使用数组模拟队列示意图)
    在这里插入图片描述
    2 数组模拟环形队列
    分析说明:
  1. 尾索引的下一个为头索引时表示队列满,即将队列容量空出一个作为约定,这个在做判断队列满的
    时候需要注意 (rear + 1) % maxSize == front 满]
  1. rear == front [空]
  2. 分析示意图:
    在这里插入图片描述
    循环数组如下图:
    难点理解,如何表示满队列和空队列
    在这里插入图片描述
    在这里插入图片描述
    在图 4-3 中用队首指针front指向队首元素所在的单元,用队尾指针rear指向队尾元素所在单元的后一个单元。如此在图 4-4(b)中所示循环队列中,队首元素为e 0 ,队尾元素为e 3 。当e 4 、e 5 、e 6 、e 7 相继进入队列后,如图 4-4(c)所示,队列空间被占
队列顺序存储结构是一种基于数组实现队列方式,它通过两个指针 `front` 和 `rear` 来分别表示队列的头部和尾部。这种实现方式需要预先定义一个固定大小的数组来存储队列中的元素,并通过对指针的操作完成入队(插入)和出队(删除)操作。 ### 队列顺序存储实现方法 #### 1. 定义队列结构 通常使用一个结构体来包含队列数据、队头指针和队尾指针: ```c #define MaxSize 10 // 定义队列的最大容量 typedef struct { int data[MaxSize]; // 存储队列元素的数组 int front; // 队头指针,指向第一个元素 int rear; // 队尾指针,指向下一个插入位置 } SqQueue; ``` #### 2. 初始化队列 初始化时,将 `front` 和 `rear` 均设置为 0,表示队列为空: ```c void InitQueue(SqQueue *Q) { Q->front = 0; Q->rear = 0; } ``` #### 3. 判断队列是否为空 当 `front` 和 `rear` 相等时,表示队列中没有元素: ```c int IsEmpty(SqQueue *Q) { return (Q->front == Q->rear); } ``` #### 4. 判断队列是否已满 为了避免假溢出问题,采用循环队列方式进行判断。具体条件是:如果 `(rear + 1) % MaxSize == front`,则表示队列已满[^4]。 ```c int IsFull(SqQueue *Q) { return ((Q->rear + 1) % MaxSize == Q->front); } ``` #### 5. 入队操作 将元素添加到队列尾部,并更新 `rear` 指针。注意在入队前需要检查队列是否已满: ```c int EnQueue(SqQueue *Q, int x) { if (IsFull(Q)) { return 0; // 队列已满,无法入队 } Q->data[Q->rear] = x; Q->rear = (Q->rear + 1) % MaxSize; // 更新队尾指针 return 1; } ``` #### 6. 出队操作 从队列头部移除一个元素,并更新 `front` 指针。出队前需检查队列是否为空: ```c int DeQueue(SqQueue *Q, int *x) { if (IsEmpty(Q)) { return 0; // 队列为空,无法出队 } *x = Q->data[Q->front]; Q->front = (Q->front + 1) % MaxSize; // 更新队头指针 return 1; } ``` #### 7. 获取队头元素 不移除队头元素,仅读取其值: ```c int GetFront(SqQueue *Q, int *x) { if (IsEmpty(Q)) { return 0; // 队列为空,无法获取队头元素 } *x = Q->data[Q->front]; return 1; } ``` #### 8. 遍历输出队列 遍历队列中的所有元素并输出: ```c void PrintQueue(SqQueue *Q) { int i = Q->front; while (i != Q->rear) { printf("%d ", Q->data[i]); i = (i + 1) % MaxSize; } printf("\n"); } ``` #### 9. 销毁队列 由于使用的是静态数组,销毁操作通常是释放动态分配的内存(如果有)。在这个示例中,可以简单地将其置空或重置指针。 ### 总结 队列顺序存储实现方法简单直观,但需要注意以下几点: - **假溢出问题**:如果不采用循环队列方式,可能会出现队列未满但无法继续入队的情况[^2]。 - **空间限制**:队列的大小受限于数组的大小,若采用动态扩容,则会增加实现复杂度和性能开销[^2]。 - **牺牲一个存储单元**:为了区分队列为空和队列为满的状态,通常需要牺牲一个存储单元[^4]。 通过上述步骤,可以完整实现一个基于顺序存储结构的队列
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值