59. 螺旋矩阵 II(中等)

本文详细描述了一个Python方法,用于生成一个按顺时针螺旋顺序排列的nxn矩阵,适用于LeetCode问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

力扣地址:https://leetcode.cn/problems/spiral-matrix-ii
难度:☆☆☆☆

题目

给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。

示例

示例 1:
在这里插入图片描述
输入:n = 3
输出:[[1,2,3],[8,9,4],[7,6,5]]

方法1

Python

class Solution:
    def generateMatrix(self, n: int) -> List[List[int]]:
        matrix = [[0] * n for _ in range(n)]  # 结果矩阵
        startx, starty = 0, 0 # 起始坐标
        loop = n // 2  # 绕的圈数
        cnt = 1  # 放入matrix的值
        
        # 每绕一圈偏移量增加1,偏移量从1开始
        for offset in range(1, loop + 1):
            for j in range(starty, n - offset):  # 从左至右,左闭右开
                matrix[startx][j] = cnt
                cnt += 1
            for i in range(startx, n - offset):  # 从上至下,上闭下开
                matrix[i][n - offset] = cnt
                cnt += 1
            for j in range(n - offset, starty, -1):  # 从右至左,右闭左开
                matrix[n - offset][j] = cnt
                cnt += 1
            for i in range(n - offset, startx, -1):  # 从下至上,下闭上开
                matrix[i][starty] = cnt
                cnt += 1
            
            # 更新起始点
            startx += 1
            starty += 1
        
        if n % 2 == 1:  # n为奇数时,填充中心点
            matrix[n // 2][n // 2] = cnt
        
        return matrix

Java

class Solution {
    public int[][] generateMatrix(int n) {
        int[][] matrix = new int[n][n]; // 结果矩阵
        int startx = 0, starty = 0;     // 起始坐标
        int loop = n / 2;               // 绕的圈数
        int cnt = 1;                    // 放入matrix的值
        
        // 每绕一圈偏移量增加1,偏移量从1开始
        for (int offset = 1; offset <= loop; offset++) {
            // 从左至右(左闭右开)
            for (int j = starty; j < n - offset; j++) {
                matrix[startx][j] = cnt++;
            }
            // 从上至下(上闭下开)
            for (int i = startx; i < n - offset; i++) {
                matrix[i][n - offset] = cnt++;
            }
            // 从右至左(右闭左开)
            for (int j = n - offset; j > starty; j--) {
                matrix[n - offset][j] = cnt++;
            }
            // 从下至上(下闭上开)
            for (int i = n - offset; i > startx; i--) {
                matrix[i][starty] = cnt++;
            }
            
            // 更新起始点
            startx++;
            starty++;
        }
        
        if (n % 2 == 1) { // n为奇数时,填充中心点
            matrix[n / 2][n / 2] = cnt;
        }
        
        return matrix;
    }
}

方法2

Python

class Solution:
    def generateMatrix(self, n: int) -> List[List[int]]:
        # 模拟过程
        # 难度:☆☆☆☆
        directions = ((0, 1), (1, 0), (0, -1), (-1, 0))  # 右下左上
        matrix = [[0] * n for _ in range(n)]  # 结果矩阵

        # i, j 是要填入到matrix时,matrix的索引
        # di是directions的索引,代表方向,在不断走时,到了边界就+1换方向即右转90度
        # di=0时是向右;di=1时是向下;di=2时是向左;di=3时是向上
        i = j = di = 0

        for val in range(1, n * n + 1):
            # val是要填入到matrix的值,采用for循环方法获得
            matrix[i][j] = val
            x, y = i + directions[di][0], j + directions[di][1]
            # 如果 (x, y) 出界或者已经填入数字,转向
            if x < 0 or x >= n or y < 0 or y >= n or matrix[x][y]:
                di = (di + 1) % 4  # 每次转向就是di+1,但是到了3时,再转就要再到0,所以需要用%取余数
            i += directions[di][0]
            j += directions[di][1]
        
        return matrix

Java

class Solution {
    public int[][] generateMatrix(int n) {
        // 模拟过程
        // 难度:☆☆☆☆

        int[][] directions = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};  // 右下左上
        int[][] matrix = new int[n][n];  // 结果矩阵
        int i = 0, j = 0, di = 0;

        for (int val = 1; val <= n * n; val++) {
            matrix[i][j] = val;
            int x = i + directions[di][0];
            int y = j + directions[di][1];
            if (x < 0 || x >= n || y < 0 || y >= n || matrix[x][y] != 0) {
                di = (di + 1) % 4;
            }
            i += directions[di][0];
            j += directions[di][1];
        }
        return matrix;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值