PiscCode迅速集成YOLO-Pose 实现姿态关键点轨迹跟踪应用

在计算机视觉领域,人体姿态检测与轨迹跟踪是很多应用场景的核心技术,例如运动分析、行为识别、智能监控等。本文将介绍如何在 PiscCode 平台上,利用 YOLO-Pose 模型进行姿态估计,并实现多人关键点轨迹跟踪。


一、什么是 PiscCode

PiscCode 是一个面向开发者的计算机视觉编程平台,它提供了灵活的 Python API 封装、多模型管理和高性能视频处理能力。在 PiscCode 平台上,开发者可以方便地:

  • 调用不同的目标检测、实例分割、姿态估计模型;

  • 对视频帧进行实时处理、绘制和结果渲染;

  • 快速构建可复用的视觉算法模块。

在本文示例中,我们使用 PiscCode 的视频处理能力,将 YOLO-Pose 模型封装为一个 FrameObject 类,实现多人体关键点检测与轨迹绘制。


二、YOLO-Pose 模型简介

YOLO-Pose 是 YOLO 系列模型的扩展版本,它在传统目标检测的基础上增加了 人体关键点预测 功能。特点如下:

  • 高效、快速,可用于实时视频分析;

  • 支持多人姿态检测;

  • 与 YOLOv8/v11 系列兼容,可通过 track() 方法获取稳定的跟踪 ID。

通过 YOLO-Pose,我们可以得到每个人体的关键点位置,并结合跟踪 ID,实现轨迹记录和绘制。


三、FrameObject 封装实现

下面是基于 YOLO-Pose 的 FrameObject 类,集成了关键点检测、轨迹缓存和绘制功能:

import cv2
import random
from ultralytics import YOLO


class FrameObject:
    def __init__(
        self,
        model_path="E:/影迹-p/Support Files/data/model/yolo11x-pose.pt",
        device="cuda",
        line_thickness=2,
        point_size=6,
        max_frames=30,
        draw_bbox=False,
    ):
        self.model = YOLO(model_path)
        self.model.to(device)
        self.device = device
        self.tf = line_thickness
        self.point_size = point_size
        self.max_frames = max_frames
        self.draw_bbox = draw_bbox
        self.trajectories = {}

    @staticmethod
    def _rand_color():
        return [random.randint(0, 255) for _ in range(3)]

    def _ensure_tracks_init(self, track_id: int, kpt_count: int):
        if track_id not in self.trajectories:
            self.trajectories[track_id] = [[] for _ in range(kpt_count)]
            self.trajectories[track_id].append(self._rand_color())
        else:
            cur_len = len(self.trajectories[track_id]) - 1
            if cur_len != kpt_count:
                color = self.trajectories[track_id][-1]
                self.trajectories[track_id] = [[] for _ in range(kpt_count)]
                self.trajectories[track_id].append(color)

    def do(self, frame):
        if frame is None:
            return None

        im = frame.copy()
        results = self.model.track(im, verbose=False, persist=True, device=self.device)
        if not results or len(results) == 0:
            return im

        res = results[0]
        ids = res.boxes.id.cpu().numpy() if res.boxes.id is not None else []
        boxes = res.boxes.xyxy.cpu().numpy() if (self.draw_bbox and res.boxes is not None) else []

        kpts = getattr(res, "keypoints", None)
        if kpts is None or kpts.data is None or len(kpts.data) == 0:
            return im

        kpts_data = kpts.data
        for i, keypoints in enumerate(kpts_data):
            track_id = int(ids[i]) if i < len(ids) else i
            kpt_count = len(keypoints)
            self._ensure_tracks_init(track_id, kpt_count)
            color = self.trajectories[track_id][-1]

            for j, point_tensor in enumerate(keypoints):
                x, y = map(int, point_tensor[:2].detach().cpu().numpy())
                if x == 0 and y == 0:
                    continue
                self.trajectories[track_id][j].append((x, y))
                if len(self.trajectories[track_id][j]) > self.max_frames:
                    self.trajectories[track_id][j].pop(0)
                cv2.circle(im, (x, y), self.point_size, color, -1)

        for track_id, traj_list in self.trajectories.items():
            color = traj_list[-1]
            for traj in traj_list[:-1]:
                if len(traj) > 1:
                    for i in range(1, len(traj)):
                        cv2.line(im, traj[i - 1], traj[i], color, thickness=max(1, self.point_size // 3))

        if self.draw_bbox and len(boxes) > 0:
            for i, box in enumerate(boxes):
                x1, y1, x2, y2 = map(int, box[:4])
                track_id = int(ids[i]) if i < len(ids) else i
                color = self.trajectories.get(track_id, [[None], self._rand_color()])[-1]
                cv2.rectangle(im, (x1, y1), (x2, y2), color, 2)

        return im

四、应用示例 Demo


五、总结

本文展示了如何在 PiscCode 平台上:

  1. 使用 YOLO-Pose 模型进行多人关键点检测;

  2. 结合 track() 方法,实现稳定 ID 的轨迹跟踪;

  3. 将关键点轨迹可视化到原始视频中。

通过封装成 FrameObject 类,开发者可以轻松集成到视频分析、运动识别、智能监控等应用中,并方便扩展更多功能,例如姿态动作识别或异常行为检测。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值