人脸识别可视化项目实现过程Bug记录

本文解决从TensorFlow 1.1.3版本迁移至2.0版本过程中遇到的问题,包括如何处理不再支持的API如Session,以及如何避免使用GPU转而使用CPU进行训练。同时,介绍了在人脸检测和聚类任务中遇到的第三方库兼容性问题及解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人脸静态图检测部分:detect_face_images.py

module ‘tensorflow’ has no attribute ‘gpuoption’

在这里插入图片描述
是可以解决但是还是会有其他类似错误,比如:module ‘tensorflow’ has no attribute ‘Session’

是因为我的代码是基于1.1.3版本的tensorflow,使用云平台的Jupyter运行是2.0版本,所以引入tengsorflow时:

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

Tensorflow强制使用CPU训练,不使用GPU

之前没有配置GPU时候运行没有问题,现在一堆错。。头疼🤦‍
在这里插入图片描述
强制使用CPU吧!

import os
os.environ["CUDA_VISIBLE_DEVICES"]="-1"

🆗!!
在这里插入图片描述

多人脸也可以

在这里插入图片描述

人脸聚类过程 :cluster.py

module ‘scipy.misc’ has no attribute ‘imread’

https://blog.csdn.net/fu6543210/article/details/103515909
在这里插入图片描述

import imageio
——省略中间代码——
img = imageio.imread(os.path.join(folder, filename))

😂出现新bug: Could not find a format to read the specified file in single-image mode
So:安装1.2.1的scipy
在这里插入图片描述

[Errno 21] Is a directory: 'data/images/.ipynb_checkpo

在这里插入图片描述

我使用jupyter 所以有隐藏文件夹 ipynb_checkpoints,加上判断语句,筛掉它即可.

最后还是很多报错,强制使用cpu训练,这些都解决了,最后运行结果
在这里插入图片描述
images文件夹中有这些图:
在这里插入图片描述
聚类后对人脸部分进行裁剪并保存在七个文件夹中,对3.jpg中的多人脸也可以识别并裁剪,放入三个文件夹.在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值