《Matching User with Item Set: Collaborative Bundle Recommendation with Deep Attention Network》论文笔记

本文详细解读了《Matching User with Item Set: Collaborative Bundle Recommendation with Deep Attention Network》论文,探讨了从单个商品推荐转向捆绑商品推荐的挑战。论文提出了一种名为Deep Attention Multi-Task (DAM)的模型,通过分解注意力网络处理非原子性的捆绑商品,并采用多任务学习来缓解用户-捆绑交互的稀疏性问题。DAM在公开数据集上表现出优越的性能,证明了其在处理冷启动和稀疏交互问题上的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《Matching User with Item Set: Collaborative Bundle Recommendation with Deep Attention Network》论文笔记

在这里插入图片描述

背景:

 大多数推荐系统研究致力于推荐单一商品给用户。然而在现实中,平台需要给用户展示的是一些列的商品(捆绑销售策略,bundle:捆绑)。
之前大部分是an item to a user,这篇论文的是 a set of items(a bundle) to a user
这篇论文的主要工作就是关注于对用户和捆绑的商品集合的交互进行建模。
在这里插入图片描述

问题:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

#苦行僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值