本文详细解读了《Matching User with Item Set: Collaborative Bundle Recommendation with Deep Attention Network》论文,探讨了从单个商品推荐转向捆绑商品推荐的挑战。论文提出了一种名为Deep Attention Multi-Task (DAM)的模型,通过分解注意力网络处理非原子性的捆绑商品,并采用多任务学习来缓解用户-捆绑交互的稀疏性问题。DAM在公开数据集上表现出优越的性能,证明了其在处理冷启动和稀疏交互问题上的有效性。
《Matching User with Item Set: Collaborative Bundle Recommendation with Deep Attention Network》论文笔记
背景:
大多数推荐系统研究致力于推荐单一商品给用户。然而在现实中,平台需要给用户展示的是一些列的商品(捆绑销售策略,bundle:捆绑)。 之前大部分是an item to a user,这篇论文的是 a set of items(a bundle) to a user 这篇论文的主要工作就是关注于对用户和捆绑的商品集合的交互进行建模。