最短路径算法之 - Dijkstra算法原理及python代码实现

本文介绍了Dijkstra算法的基本原理,这是一种用于计算单源最短路径的算法。核心思想是每次选择未访问节点中距离源点最近的一个,并以此节点更新其他节点的最短路径。文章还提供了算法的主要步骤,并通过Python代码展示了其实现过程。最后,分析了算法的时间复杂度为O(n^2),而空间复杂度为O(n)。文章提到了使用堆优化可以将时间复杂度降低到O(nlogn)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🦄Dijkstra算法属于单源最短路,算法原理也蛮简单,计算某个源点到终点的最短距离,start->end 。Dijkstra算法使用类似BFS的方法解决赋权图的单源最短路径问题
【核心思想:每次取出未访问结点中距离最小的,用该结点更新其他结点的距离。】

算法主要步骤如下:
1.计算源点到其余直连点的最短距离,存入dist列表
2.找出了最近点后,标记其为遍历过,以此为中间节点,计算源点到中间点到其他点的距离(start->next_node->?)。【并记录?节点的前一跳过来的节点,方便后面取出最短路径】
3.继续遍历未遍历过的节点,按2步骤更新
4.返回最短路径长度(并取出最短路径)

代码实现如下:

def Dijkstra(graph, start, end):
    path = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

#苦行僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值