Python图像处理,cv2模块,OpenCV实现边缘检测

该博客介绍了如何使用Python的OpenCV库进行边缘检测,特别是在实现‘跳一跳’游戏中的应用。首先,介绍了所需的开发环境和模块,包括Python 3.6.4、cv2和numpy。接着,详细阐述了Canny边缘检测算法的5个步骤,并提供了具体的代码实现。通过边缘检测找到方块的中心位置,然后结合adb命令完成自动化操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

利用Python实现OpenCV实现边缘检测。废话不多说。

让我们愉快地开始吧~

开发工具

Python版本: 3.6.4

相关模块:

cv2模块;

numpy模块;

以及一些Python自带的模块。

环境搭建

安装Python并添加到环境变量,pip安装需要的相关模块即可。

边缘检测则是使用OpenCV的Canny函数实现,算法虽然很复杂,但是代码却很简单。

5个步骤,使用高斯滤波器对图像去噪、计算梯度、在边缘上使用非最大抑制(NMS)、在检测到的边缘上使用双(double)阈值去除阳性(false positive)、分析所有的边缘及其连接,保留真正的边缘并消除不明显的边缘。

下面就来实现一下「跳一跳」的边缘检测,得以获取方块的中心位置。

边缘检测

Canny边缘检测代码

import cv2
import numpy as np

# 读取原图像
img = cv2.imread('game.png', 0)

# 显示原图像
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 400, 600)
cv2.imshow('img', img)

# 高斯模糊
img_rgb = cv2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小雁子学Python

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值