图神经网络的数学基本原理

@作者DeepHub IMBA,个人学习记录

图神经网络

单个图神经网络(GNN)层有一堆步骤,在图中的每个节点上会执行:
- 消息传递
- 聚合
- 更新
这些组成了对图形进行学习的构建块,GDL的创新都是在这3个步骤的进行的改变。

节点

节点表示一个实体或对象,如用户或原子。因此节点具有所表示实体的一系列属性。这些节点属性形成了节点的特征(即“节点特征”或“节点嵌入”)。

通常,这些特征可以用Rd中的向量表示. 这个向量要么是潜维嵌入,要么是以每个条目都是实体的不同属性的方式构造的。

这些节点特征是GNN的输入,每个节点i具有关联的节点特征xi∈Rd和标签yi(可以是连续的,也可以是离散的,就像单独编码一样)。
在这里插入图片描述

边也可以有特征aij∈Rd '例如,在边缘有意义的情况下(如原子之间的化学键)。

消息传递

gnn以其学习结构信息的能力而闻名。通常,具有相似特征或属性的节点相互连接(比如在社交媒体中)。GNN利用学习特定节点如何以及为什么相互连接,GNN会查看节点的邻域。

GNN可以通过查看其邻居Ni中的节点i来了解很多关于节点i的信息。为了在源节点i和它的邻居节点j之间实现这种信息共享,gnn进行消息传递。

对于GNN层,消息传递被定义为获取邻居的节点特征,转换它们并将它们“传递”给源节点的过程。对于图中的所有节点,并行地重复这个过程。这样,在这一步结束时,所有的邻域都将被检查。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜鸟08哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值