【机器学习】鸢尾花Iris数据集进行线性分类

一、实验准备

  • 安装python3.6/3.7、Anaconda 和 jupyter、spyder软件。创建一个名为exam1的虚拟环境,在虚拟环境下安装numpy、pandas、sklearn包。按照课件上的代码例子,对鸢尾花Iris数据集进行SVM线性分类练习。
    软件的安装和虚拟环境配置参考了同学的博客【Anaconda】【Jupyter】【Spyder】安装及虚拟环境配置步骤
  • 熟悉Jupyter环境下的python编程,在Jupyter下完成一个鸢尾花数据集的线性多分类、可视化显示与测试精度实验。

二、线性分类

打开Jupyter Notebook
在这里插入图片描述
如果未弹出网页,手动将cmd中的网址粘贴到浏览器中即可
在这里插入图片描述
然后在右侧【new】→【python3】
在这里插入图片描述

1.原始数据

在代码框内写入以下代码

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC

iris = datasets.load_iris()
X = iris.data
y = iris.target

X = X [y<2,:2] # 只取y<2的类别,也就是0 1 并且只取前两个特征
y = y[y<2] # 只取y<2的类别

# 分别画出类别 0 和 1 的点
plt.scatter(X[y==0,0],X[y==0,1],color='red')
plt.scatter(X[y==1,0],X[y==1,1],color='blue')
plt.show()

运行结果如下,得出原始数据
在这里插入图片描述

2.训练模型

将以下代码添加在上部分代码后面

# 标准化
standardScaler = StandardScaler()
standardScaler.fit(X)

# 计算训练数据的均值和方差
X_standard = standardScaler.transform(X) # 再用 scaler 中的均值和方差来转换 X ,使 X 标准化
svc = LinearSVC(C=1e9) # 线性 SVM 分类器
svc.fit(X_standard,y) # 训练svm

运行结果如下
在这里插入图片描述
此处C值是控制正则项的重要程度,C越小容错空间越大,求出C=1000000000.0表明模型容错极小。

3.绘制决策边界

同样的,将以下代码添加在上部分代码后面

from matplotlib.colors import ListedColormap # 导入 ListedColormap 包

def plot_decision_boundary(model, axis): 
	x0, x1 = np.meshgrid( np.linspace(axis[0]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值