
面经题库
文章平均质量分 91
大叔爱学习.
所谓至明,不过至专。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
2022 深度学习 & 计算机视觉 & 感知算法 面经整理 二十五(241 242 243 244 245 246 247 248 249 250)
2022 深度学习 & 计算机视觉 & 感知算法 面经整理 二十五(241 242 243 244 245 246 247 248 249 250)原创 2022-08-21 14:49:53 · 1119 阅读 · 0 评论 -
2022 深度学习 & 计算机视觉 & 感知算法 面经整理 二十三(231 232 233 234 235 236 237 238 239 240)
2022 深度学习 & 计算机视觉 & 感知算法 面经整理 二十三(231 232 233 234 235 236 237 238 239 240)原创 2022-08-11 13:35:18 · 712 阅读 · 0 评论 -
2022 深度学习 & 计算机视觉 & 感知算法 面经整理 二十三(221 222 223 224 225 226 227 228 229 230)
2022 深度学习 & 计算机视觉 & 感知算法 面经整理 二十三(221 222 223 224 225 226 227 228 229 230)原创 2022-08-10 15:18:53 · 603 阅读 · 0 评论 -
2022 深度学习 & 计算机视觉 & 感知算法 面经整理 十(81 82 83 84 85 86 87 88 89 90 91 92)
文章目录81 讲一下 xgb 与 lgb 的特点与区别82 讲一下 xgb 的二阶泰勒展开对于 GBDT 有什么优势83 介绍 xgboost 和 gbdt 的区别84 adaboost 和随机森林有什么区别85 LBP 特征和 SIFT 的特征的意义86 颜色校正、白平衡的过程87 HOG 特征的意义88 GBDT 原理89 ROC 含义、AUC 含义90 XGB 原理,正则化操作 81 讲一下 xgb 与 lgb 的特点与区别 82 讲一下 xgb 的二阶泰勒展开对于 GBDT 有什么优势 83 介原创 2022-03-10 22:02:38 · 1309 阅读 · 0 评论 -
2022 深度学习 & 计算机视觉 & 感知算法 面经整理 九(71 72 73 74 75 76 77 78 79 80)
文章目录71 请介绍 k-mean 算法的原理72 逻辑回归怎么分类非线性数据?73 请介绍几种常用的参数更新方法。74 Xgboost、lightGBM 和 Catboost 之间的异同?75 讲讲 dropout 原理76 怎么解决过拟合?怎么做图像增广?77 Sigmoid 有哪些特性?激活函数了解多少?78 lr 为什么要用极大似然 ?79 讲一下 lgb 的直方图是怎么用的 ?80 集成学习 boosting 和 bagging 的概念 71 请介绍 k-mean 算法的原理 72 逻辑回归怎么原创 2022-03-10 21:55:21 · 1186 阅读 · 0 评论 -
2022 深度学习 & 计算机视觉 & 感知算法 面经整理 八(62 63 64 65 67 68 69 70)
文章目录62 LSTM和GRU有何不同63 CRF 的损失函数是什么,具体怎么算?64 Transformer原理介绍65 BERT介绍下原理66 sigmoid缺点67 Layer Normalization 和 Batch Normalization 的区别68 怎么处理数据不平衡69 什么是梯度消失和梯度爆炸?70 决策树有多少种,分别的损失函数是什么? 62 LSTM和GRU有何不同 63 CRF 的损失函数是什么,具体怎么算? 64 Transformer原理介绍 65 BERT介绍原创 2022-03-10 21:47:12 · 554 阅读 · 0 评论 -
2022 深度学习 & 计算机视觉 & 感知算法 面经整理 七(51 52 53 54 55 56 57 58 59 60 61)
文章目录51 Resnet和Transformer的模型结构ResnetTransformer52 CNN和RNN优缺点53 介绍LSTM54 讲下Self-Attention55 常见激活函数和特点56 Layer norm和Batch norm的区别57 卷积的本质58 概率的知识点59 Sigmoid 、MSELoss 及 CELoss 的来源60 讲一下目标检测 OneStage、 TwoStage 以及 YOLOv161 写一下 Softmax CrossEntropy 的反向传播推导过程 51原创 2022-03-10 21:05:38 · 818 阅读 · 0 评论 -
2022 深度学习 & 计算机视觉 & 感知算法 面经整理 六(41 42 43 44 45 46 47 48 49 50)
文章目录41 不平衡数据是否会影响神经网络的分类效果?41 无监督降维提供的是帮助还是摧毁?42 是否可以将任何非线性作为激活函数?43 批大小如何影响测试正确率?44 初始化如何影响训练?45 不同层的权重是否以不同的速度收敛?46 正则化如何影响权重?47 多标签loss48 多标签分类的准确率49 数据类不平衡50 欠拟合和过拟合 41 不平衡数据是否会影响神经网络的分类效果? 当数据集不平衡时(如一个类的样本比另一个类还多),那么神经网络可能就无法学会如何区分这些类。在这个实验中,我们探讨这一情况是原创 2022-03-10 20:33:19 · 922 阅读 · 0 评论