model = Sequential()
model.add(layers.Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
activation ='relu'))
model.add(layers.MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(layers.Flatten())
model.add(layers.Dense(256, activation = "relu",kernel_regularizer=tf.keras.regularizers.l2(0.003)))
model.add(layers.BatchNormalization())
model.add(layers.Dropout(0.4))
Sequential容器中常用层的添加
最新推荐文章于 2022-11-29 11:08:17 发布