Sequential容器中常用层的添加

本文详细介绍了一个深度学习图像识别模型的构建过程,包括使用Conv2D进行特征提取,MaxPool2D进行下采样,Flatten展平操作,Dense全连接层实现分类,并引入了正则化和Dropout防止过拟合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

model = Sequential()
model.add(layers.Conv2D(filters = 64, kernel_size = (3,3),padding = 'Same',
                 activation ='relu'))
model.add(layers.MaxPool2D(pool_size=(2,2), strides=(2,2)))
model.add(layers.Flatten())
model.add(layers.Dense(256, activation = "relu",kernel_regularizer=tf.keras.regularizers.l2(0.003)))
model.add(layers.BatchNormalization())
model.add(layers.Dropout(0.4))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值