Robert+SimCLR+FGSM实现文本分类

该博客介绍了如何在RoBERTa文本分类基础上,结合SimCLR的自监督学习和对抗训练(FGSM)的思想,以提升模型在SST-2数据集上的准确率。通过数据增强、对抗训练以及模型改进方法,优化模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Robert文本分类基础上,我用的是GLUE的SST-2数据集,包含train.txt、test.txt、dev.txt三个文件,每个文件包含内容和标签两列。用SimCLR思想结合对抗训练的思想提升模型文本分类的准确率,我用Pytorch实现,代码逐行注释。

目录

二、加载数据集

三、定义模型

四、定义训练函数

五、定义测试函数

六、定义训练过程

七、另一种实现方法

八、改进方法


一、SimCLR和对抗训练思想

SimCLR是一种自监督学习方法,其主要思想是将两个不同的数据增强方法应用于同一张图片,然后将得到的两个样本通过一个共享的特征提取器进行编码,最后通过对比损失函数来优化模型,从而达到学习更具有区分度的特征表示的目的。

对抗训练则是一种通过在训练过程中向模型注入人工生成的对抗样本来提高模型鲁棒性的方法。

在本任务中,我们将结合SimCLR和对抗训练的思想来提升模型的文本分类准确率。具体实现步骤如下。

二、加载数据集

我们首先需要加载数据集,这里使用PyTorch内置的torchtext库来读取数据。由于数据集中的文本数据需要进行预处理和转换成数字形式,我们需要定义一些预处理和转换规则。下面是代码:

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchtext.legacy import data
from 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dr.Petrichor

作者逐个题目分析的噢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值