Robert文本分类基础上,我用的是GLUE的SST-2数据集,包含train.txt、test.txt、dev.txt三个文件,每个文件包含内容和标签两列。用SimCLR思想结合对抗训练的思想提升模型文本分类的准确率,我用Pytorch实现,代码逐行注释。
目录
一、SimCLR和对抗训练思想
SimCLR是一种自监督学习方法,其主要思想是将两个不同的数据增强方法应用于同一张图片,然后将得到的两个样本通过一个共享的特征提取器进行编码,最后通过对比损失函数来优化模型,从而达到学习更具有区分度的特征表示的目的。
对抗训练则是一种通过在训练过程中向模型注入人工生成的对抗样本来提高模型鲁棒性的方法。
在本任务中,我们将结合SimCLR和对抗训练的思想来提升模型的文本分类准确率。具体实现步骤如下。
二、加载数据集
我们首先需要加载数据集,这里使用PyTorch内置的torchtext
库来读取数据。由于数据集中的文本数据需要进行预处理和转换成数字形式,我们需要定义一些预处理和转换规则。下面是代码:
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchtext.legacy import data
from