风控建模概述
学习目标
-
知道信贷审批业务的基本流程
-
知道ABC评分卡是什么,有什么区别
-
知道风控建模的流程
-
掌握评分卡模型正负样本定义方法
-
知道如何构建特征,如何评估特征
1 互联网金融风控体系介绍
-
信贷审批业务基本流程
-
四要素认证:银行卡持有人的姓名、身份证号、银行卡号、手机号
-
-
-
互联网金融风控体系主要由三大部分组成:
-
用户数据:用户基本信息、用户行为信息、用户授权信息、外部接入信息。
-
数据采集会涉及到埋点和爬虫技术,基本上业内的数据都大同小异。
-
免费的运营商数据
-
安卓可爬的手机内部信息(app名称,手机设备信息,部分app内容信息)
-
收费的征信数据、各种信息校验、外部黑名单之类的
-
特定场景的现金贷和消费金融会有自有的数据可供使用
-
比如阿里京东自己的电商数据
-
滴滴的司机数据、顺丰中通的快递数据
-
-
-
用户基本信息(联系人,通讯录,学历...)
-
用户行为信息(操作APP时的行为,注册,点击位置...)
-
用户授权信息(运营商,学信网,设备IMEI....)
-
外部接入信息(P2P信贷,其它金融机构如芝麻信用分...)
-
-
策略体系:反欺诈规则、准入规则、运营商规则、风险名单、网贷规则
-
收集来用户的信息之后,把用户信息输入到策略引擎
-
欺诈规则
-
准入规则(年龄,地域,通讯录,行为规则)
-
运营商规则(通话规则)
-
风险名单(黑名单,失信名单,法院名单)
-
网贷(多头,白户...)
-
-
机器学习模型:欺诈检测模型、准入模型、授信模型、风险定价、额度管理、流失预警、失联修复。
贷前准入 贷中管理 贷后催收 信用 申请评分卡 行为评分卡 催收评分卡 反欺诈 申请反欺诈 交易反欺诈 运营 用户响应模型 用户流失模型、用户分群、用户画像 失联修复 其他 套现识别、洗钱识别 -
2 风控建模流程
2.1 评分卡简介
-
风控模型其中包含了A/B/C卡。模型可以采用相同算法,一般以逾期天数来区分正负样本,也就是目标值Y的取值(0或1)
-
贷前 申请评分卡 Application score card
-
贷中 行为评分卡 Behavior score card
-
贷后 催收评分卡 Collection score card
-
-
C卡因为用途不同Y的取值可能有区别
-
公司有内催,有外催。外催回款率低,单价贵
-
可以根据是否被内催催回来定义C卡的Y。
-
2.2 机器学习模型的完整工程流程
-
准备
-
明确需求
-
模型设计
-
业务抽象成分类/回归问题
-
定义标签(目标值)
-
-
样本设计
-
-
特征工程
-
数据处理,选取合适的样本,并匹配出全部的信息作为基础特征
-
特征构建
-
特征评估
-
-
模型
-
模型训练
-
模型评价
-
模型调优
-
-
上线运营
-
模型交付
-
模型部署
-
模型监控
-
2.3 项目准备期
项目准备期 → 特征工程 → 模型构建 → 上线运营
-
明确需求
-
目标人群:新客,优质老客,逾期老客
-
给与产品:额度,利率
-
市场策略:冷启动,开拓市场,改善营收
-
使用时限:紧急使用,长期部署
-
举例
-
业务需要针对全新客户开放一个小额现金贷产品,抢占新市场
-
针对高风险薄数据新客的申请评分卡
-
-
-
模型设计
-
业务抽象成分类/回归问题
-
风控场景下问题通常都可以转化为二分类问题:
-
信用评分模型期望用于预测一个用户是否会逾期,逾期用户1
-
营销模型期望用于预测一个用户被营销后是否会来贷款,没贷用户1
-
失联模型期望用于预测一个用户是否会失联,失联用户1
风控业务中,只有欺诈检测不是二分类问题。因为样本数量不足,可能是一个无监督学习模型
-
-
-
模型算法
-
规则模型
-
逻辑回归
-
集成学习
-
融合模型
-
-
模型输入:
-
数据源
-
时间跨度
-
-
Y标签定义
-
在构建信贷评分模型时,原始数据中只有每个人的当前逾期情况,没有负样本,负样本需要人为构建
-
通常选一个截断点(阈值),当逾期超过某个阈值时,就认定该样本是一个负样本,未来不会还钱
-
比如逾期15天为正负样本的标记阈值,Y = 1的客户均是逾期超过15天的客户
-
逾期>15天时 Y = 1,那么Y=0如何定义
-
只会将按时还款和逾期较少的那一部分人标记为0。如:将逾期<5天和没有逾期的人作为正样本
-
逾期5~15天的数据(灰样本)会从样本中去掉,去掉“灰样本”,会使样本分布更趋于二项分布,对模型学习更加有利。
-
“灰样本”通常放入测试集中,用于确保模型在训练结束后,对该部分样本也有区分能力。
-
-
-
样本选取
-
代表性:样本必须能够充分代表总体。如消费贷客群数据不能直接用到小额现金贷场景
-
充分性:样本集的数量必须满足一定要求。评分卡建模通常要求正负样本的数量都不少于1500个。随着样本量的增加,模型的效果会显著提升
-
时效性:在满足样本量充足的情况下,通常要求样本的观测期与实际应用时间节点越接近越好。如银行等客群稳定的场景,观察期可长达一年半至两年。
-
排除性(Exclusion):虽然建模样本需要具有代表整体的能力,但某些法律规定不满足特定场景贷款需求的用户不应作为样本,如对行为评分卡用户、无还款表现或欺诈用户均不应放入当前样本集。
-
评分卡建模通常要求正负样本的数量>=1500,但当总样本量超过50000个时,许多模型的效果不再随着样本量的增加而有显著提升,而且数据处理与模型训练过程通常较为耗时。
-
如果样本量过大,会为训练过程增加不必要的负担,需要对样本做欠采样(Subsampling)处理。由于负样本通常较少,因此通常只针对正样本进行欠采样。常见的欠采样方法分为:
-
随机欠采样:直接将正样本欠采样至预期比例。
-
分层抽样:保证抽样后,开发样本、验证样本与时间外样本中的正负样本比例相同。
-
等比例抽样:将正样本欠采样至正负样本比例相等,即正样本量与负样本量之比为1:1。 需要注意的是,采样后需要为正样本添加权重。如正样本采样为原来的1/4,则为采样后的正样本增加权重为4,负样本权重保持为1。因为在后续计算模型检验指标及预期坏账时,需要将权重带入计算逻辑,才可以还原真实情况下的指标估计值,否则预期结果与实际部署后的结果会有明显偏差。
-
而当负样本较少的时候,需要进行代价敏感加权或过采样(Oversampling)处理
-
-
观察期和表现期
-
观察期是指用户申请信贷产品前的时间段
-
表现期是定义好坏标签的时间窗口,如果在该时间窗口内触发坏定义就是坏样本,反之就是好样本。
-
举例: 要建立A卡模型, 观察期12个月,表现期3个月
-
用户贷款前12个月的历史行为表现作为变量,用于后续建模
-
如设定用户在到期3个月内未还款,即认为用户为负样本,则称表现期为3个月
-
-
-
训练数据测试数据划分
-
数据集在建模前需要划分为3个子集:
-
开发样本(Develop):开发样本与验证样本使用分层抽样划分,保证两个数据集中负样本占比相同
-
验证样本(Valuation): 开发样本与验证样本的比例为6:4
-
时间外样本(Out of Time,OOT): 通常使用整个建模样本中时间最近的数据, 用来验证模型对未来样本的预测能力,以及模型的跨时间稳定性。
-
-
-
-
举例:
-
申请评分卡 | 行为评分卡 | 催收评分卡 | |
---|---|---|---|
客群 | 新客 | 未逾期老客 | 逾期老客 |
观察期 | 申请时点前一年 | 当期某一日前一年 | 当期还款日前一年 |
表现期 | FPD30 | DPD60 | DPD1->DPD30 |
-
样本设计
-
选取客群:新客,未逾期老客,逾期老客
-
训练集 测试集 1月 2月 3月 4月 5月 6月 7月 8月 总# 100 200 300 400 500 600 700 800 坏# 3 6 6 8 15 12 14 24 坏% 3% 3% 2% 2% 3% 2% 2% 3% -
客群描述:首单用户、内部数据丰富、剔除高危职业、收入范围在XXXX
-
客群标签:好: FPD<=5 坏: FPD>15, (5,15)灰样本,不参与训练,参与测试评估
-
2.4 特征工程
-
数据调研
-
明确对目标人群有哪些可用数据, 明确数据获取逻辑
-
明确数据的质量,覆盖度,稳定性
-
-
-
-
特征构建
-
误区:拿到数据之后,立即做特征
-
构建特征之前需要明确:
-
数据源对应的具体数据表,画出ER图
-
评估特征的样本集
-
B卡样本集不能包含逾期数据
-
C卡样本集不能包含按时还款的数据
-
-
特征框架,确保对数据使用维度进行了全面思考
-
确定思维框架, 与组内其它人讨论
-
-
-
明确数据源对应的具体数据表
-
明确数据是从哪里来的: (DE Data Engineer 数仓工程师)
-
-
数据分析师拿到的数据可能是:
数仓原始表
数仓重构表
-
数仓原始表和数仓重构表可能数据量有差异,因为更新时间不同!
尽量使用数仓工程师加工好的重构表,确保逻辑统一
实时预测要确保生产数据库和数据仓库数据一致 (很难)
-
-
画出类ER图 数据关系 一对一,一对多,多对多
-
-
写SQL查询时要从 用户列表出发, Join其它表
-
不能出现SELECT DISTINCT user_id FROM order_table
-
-
-
明确评估特征的样本集
-
新申请客户没有内部信贷数据
-
未逾期老客户当期没有逾期信息
-
逾期老客户和未逾期老客的还款数据一定差别很大
-
-
如何从原始数据中构建特征:指定特征框架,确保对数据使用维度进行了全面思考
-
每个属性都可以从R(Recency) F(Frequency) M(Monetary)三个维度思考,来构建特征
GPS 经纬度 R 最近GPS所在省市区, 申请时间GPS所在省市区 F GPS出现过的省市区,出现最多的省市区 M GPS出现最多的省市区的GDP,人口,坏账率, 该地区的其他统计信息 时间 R 最近一天/周/月的GPS数 F 过去N天/周/月的GPS的平均数, 早上/中午/晚上/上班日/周末GPS数 M None 地址 R 最近GPS距离家庭/工作地址距离 F 出现最多GPS距离家庭/工作地址距离 M -
-