Leetcode 798. 得分最高的最小轮调
题目
给定一个数组 A,我们可以将它按一个非负整数 K 进行轮调,这样可以使数组变为 A[K], A[K+1], A{K+2], … A[A.length - 1], A[0], A[1], …, A[K-1] 的形式。此后,任何值小于或等于其索引的项都可以记作一分。
例如,如果数组为 [2, 4, 1, 3, 0],我们按 K = 2 进行轮调后,它将变成 [1, 3, 0, 2, 4]。这将记作 3 分,因为 1 > 0 [no points], 3 > 1 [no points], 0 <= 2 [one point], 2 <= 3 [one point], 4 <= 4 [one point]。
在所有可能的轮调中,返回我们所能得到的最高分数对应的轮调索引 K。如果有多个答案,返回满足条件的最小的索引 K。
测试样例
示例 1:
输入:[2, 3, 1, 4, 0]
输出:3
解释:
下面列出了每个 K 的得分:
K = 0, A = [2,3,1,4,0], score 2
K = 1, A = [3,1,4,0,2], score 3
K = 2, A = [1,4,0,2,3], score 3
K = 3, A = [4,0,2,3,1], score 4
K = 4, A = [0,2,3,1,4], score 3
所以我们应当选择 K = 3,得分最高。
示例 2:
输入:[1, 3, 0, 2, 4]
输出:0
解释:
A 无论怎么变化总是有 3 分。
所以我们将选择最小的 K,即 0。
提示:
- A 的长度最大为 20000。
- A[i] 的取值范围是 [0, A.length]。
题解
首先我们求出每个元素对应的从有效到无效的最小轮调数
元素A[i],本来应该在A[i]的下标位置,现在在i的位置,使其无效则最小轮调数为 (i-A[i]+len+1)%len。我们令change[(i-A[i]+n+1)%n]–,也就是说轮调数为(i-A[i]+len+1),得分会减1。
我们从1开始遍历轮调数,显然得分改变change[i]+1了,+1是因为,每次轮调会把下标为0的元素挪到下标为n-1的位置上,也就是一定会有一个元素从无效到有效。
详细过程见代码
代码
int bestRotation(vector<int>& A) {
int n = A.size();
vector<int> change(n,0);
for(int i=0; i<n; i++){
change[(i-A[i]+n+1)%n]--; //轮调(i-A[i]+n+1)%n次,会使得分-1
}
int score=0,K=0,maxScore=0;
for(int i=1; i<n; i++){
score += change[i]+1; //+1是因为,每次轮调会把下标为0的元素挪到下标为n-1的位置上,也就是一定会有一个元素从无效到有效
if(score > maxScore){
K = i;
maxScore = score;
}
}
return K;
}
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/smallest-rotation-with-highest-score
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。