机器学习的入门笔记(五)

4. 无监督学习

4.1 聚类

k-means算法

例如下面这些样本要划分为两个集合,我们需要找两个集合的中心点,我们将其称为簇点,首先我们随机挑选两个点,例如下面的红X和蓝X
在这里插入图片描述

然后我们进行上色,就是说看这个点更靠近哪个簇点,更靠近哪个簇点就染为哪个颜色

在这里插入图片描述
然后我们开始调整簇点,例如红色的簇点,就改成所有红色点的中心点。
在这里插入图片描述

然后我们发现需要重新染色,那么我们再次染色后,发现变成了这样,就需要再重新调整簇点,不断重复。

在这里插入图片描述

最终结果就变成了这样:

在这里插入图片描述

成本函数

K-means 的成本函数就是这样,是指所有的点到它簇点的距离的平方的均值,算法过程就是不停找成本函数最小的,但这是个局部最优解。
在这里插入图片描述

初始化簇点位置

这个算法只能找到局部最优解,因此很考验第一个簇点的位置,下面就是不同簇点选择不同的结果。这时候需要用成本函数来判断哪个更好,

那么怎么选择簇点呢?假如说我们有3个分类,那我们可以从样本里随机挑三个出来,当做簇点。

在这里插入图片描述

4.2 异常检测

密度估计

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值